
Introduction to the Jacobson radical, with a view

towards representation theory

Eddie Nijholt

December 13, 2024

This document gathers some elementary results about the Jacobson radical. Its
main purpose is to show that a number of different definitions are equivalent
and to demonstrate that the Jacobson radical is a double-sided ideal. After
that, we will identify it in certain algebras arising from representation theory.
All results presented here are well-known in the literature.

1 Basic Definitions

Throughout this document, a ring R will always be assumed to have a multi-
plicative identity element. That is, there exists an element 1 ∈ R such that
1x = x = x1 for all x ∈ R. We also assume that 0 6= 1, so that R has at least
two elements. We do not assume R to be commutative, however, which means
that for a, b ∈ R we may have ab 6= ba.

Our most important examples are real algebras. For our purpose, a real
algebra is a ring A containing a specified copy of the real numbers R as a
subring in its center. That is to say, for all r ∈ R we have an element φr ∈ A so
that:

• φr = φs for r, s ∈ R if and only if r = s;

• φ1 = 1 (the multiplicative identity element of A);

• φr + φs = φr+s and φrφs = φrs for all r, s ∈ R;

• φrx = xφr for all r ∈ R and x ∈ A.

One verifies that this makes A into a real vector space, where multiplication by
a number r ∈ R is defined by x 7→ φrx = xφr for all x ∈ A. We will henceforth
often write rx := φrx, after which we may retrieve the element φr as φr = r1
for 1 the multiplicative identity element of A.

Since the ring R is not assumed to be commutative, we need to distinguish
between left ideals, right ideals and two-sided ideals. A left ideal is a non-empty
subset I ⊆ R such that for all u, v ∈ I and x ∈ R we have −u, u + v, xu ∈ I.
Analogously, a right ideal is a non-empty subset I ⊆ R such that for all u, v ∈ I
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and x ∈ R we have −u, u+ v, ux ∈ I. A two-sided ideal is a subset of R that is
both a left- and a right ideal. Note that in a real algebra A, any right-, left- or
two-sided ideal I is also a linear subspace of A. This is because for any r ∈ R
and x ∈ I we have rx = φrx = xφr ∈ I.

Of special importance to us are the so-called maximal ideals.

Definition 1.1. A maximal left ideal is a proper left ideal I ⊆ R (proper means
that I 6= R), such that if we have a left ideal J ⊆ R for which I ⊆ J ⊆ R, then
necessarily J = I or J = R.

Likewise, a maximal right ideal is a right ideal I ( R such that no right
ideal J exists satisfying I ( J ( R.

A maximal two-sided ideal is a two-sided ideal I ( R such that no other
two-sided ideal sits between I and R.

Maximal left-, right- and two-sided ideals always exist in any ring R (provided
we have a multiplicative identity element), due to Zorn’s lemma. More precisely,
given any (left-, right- or two-sided) proper ideal I ( R, there exists a maximal
(resp. left-, right- or two-sided) ideal J such that I ⊆ J . In the case of finite
rings or finite-dimensional algebras, this can be shown with a much simpler
argument. Namely, let SI be the collection of all proper ideals containing I,
and choose any J ∈ SI with highest cardinality or dimension. Note that SI is
non-empty as I ∈ SI . Then J is necessarily maximal and I ⊆ J by assumption.
Thus, to show that maximal ideals exist, it remains to show that R contains at
least one proper, two-sided ideal I. To this end, we may simply choose I = {0}.

Maximal ideals are closely related to so-called simple modules, as is shown in
Lemma 1.3 below. Recall that a left module M over a ring R is an abelian group
(with the group operation denoted by + and with identity 0 ∈ M), together
with an operation · : R×M →M such that

• 1 ·m = m for all m ∈M ;

• s · (r ·m) = (sr) ·m for all s, r ∈ R and m ∈M ;

• (s+ t) ·m = s ·m+ t ·m for all s, r ∈ R and m ∈M ;

• s · (m+ n) = s ·m+ s · n for all s ∈ R and m,n ∈M .

Similarly, a right module M over a ring R is an abelian group with an operation
· : M ×R→M such that

• m · 1 = m for all m ∈M ;

• (m · r) · s = m · (rs) for all s, r ∈ R and m ∈M ;

• m · (s+ t) = m · s+m · t for all s, r ∈ R and m ∈M ;

• (m+ n) · s = m · s+ n · s for all s ∈ R and m,n ∈M .
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As with rings, we will henceforth denote the operation ‘·’ simply by concate-
nation. In case the ring R is a real algebra, any left- or right module is also
a real vector space. A submodule of a left module M is a non-empty subset
N ⊆M such that for all m,n ∈ N and r ∈ R we have −m,m+ n, rn ∈ N , and
we similarly define a submodule of a right module. As there is in general no
notion of right-multiplication in a left module or vice versa, there is no ambi-
guity in writing ‘submodule’ for both notions in a left- or right module. In case
such ambiguity does exist, we may sometimes write ‘left submodule’ or ‘right
submodule’ instead.

Definition 1.2. A left- or right module M over the ring R is called simple (or
sometimes irreducible) if M 6= {0} and the only submodules of M are {0} and
M itself.

Given a left module M over a ring R and a submodule N ⊆M , we may form the
quotient M/N , which is again a left module over R. The same construction of
course works for right modules. Note that a ring R is naturally both a left- and
right module over itself. Its left (resp. right) submodules are then precisely its
left (resp. right) ideals. Thus, a left ideal I over R gives rise to the left module
R/I, and similarly for right ideals. The following result uses this construction
to relate maximal ideals to simple modules.

Lemma 1.3. Let I ⊆ R be a left (resp. right) ideal. The left (resp. right)
module R/I is simple, if and only if I is maximal.

Proof. We restrict the proof to left ideals and modules. The case for the
right objects goes precisely the same. Suppose first that R/I is simple, and
let J be a left ideal such that I ⊆ J ⊆ R. We consider the submodule
J/I := {[x] | x ∈ J} ⊆ R/I, where [x] ∈ R/I denotes the class of x ∈ R.
Because R/I is assumed simple, there are two options. Either J/I = {0} or
J/I = R/I. In the first case we have J ⊆ I and so J = I. In the second case we
see that for all r ∈ R there is an x ∈ J such that [r] = [x] ∈ R/I. Thus we have
r − x ∈ I ⊆ J , but because also x ∈ J we find r = (r − x) + x ∈ J . This shows
that J = R. It remains to show that I does not equal R. However, if this were
the case then we would find R/I = {0}, contradicting the definition of a simple
module. This shows that I is indeed maximal.

Now suppose R/I is not simple. Then either R/I = {0}, in which case I = R
is not maximal, or there is a submodule {0} ( N ( R/I. In the latter case,
consider the set

JN := {r ∈ R | [r] ∈ N} . (1)

Given r, s ∈ R with [r] ∈ N , it follows that [sr] = s[r] ∈ N . Using this, one
verifies that JN is a left ideal of R. If JN = R then 1 ∈ JN and so [1] ∈ N . This
in turn implies that r[1] = [r] ∈ N for all r ∈ R, and so N = R/I. From this
contradiction we learn that instead JN ( R. Next, we note that for all r ∈ I
we have [r] = [0] ∈ N and thus I ⊆ JN . Finally, to show that I 6= JN pick any
non-zero element n ∈ N . It holds that n = [r] for some r ∈ R and so necessarily
r ∈ Jn. But since [r] = n 6= 0, we see that r /∈ I. This shows that I ( JN .
Summarizing, we find I ( JN ( R, so that I is not maximal.
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Another useful notion is that of a homomorphism between left R-modules M
and M ′. This is a function f : M →M ′ satisfying

• f(m+ n) = f(m) + f(n) for all m,n ∈M ;

• f(rm) = rf(m) for all r ∈ R and m ∈M .

Note that f(0) = f(0 + 0) = f(0) + f(0), from which

0 = f(0)− f(0) = f(0) + f(0)− f(0) = f(0) .

In turn, we find f(m)+f(−m) = f(m−m) = f(0) = 0 and so f(−m) = −f(m).
Or note alternatively that (1 − 1)m = m + (−1)m = 0, so that (−1)m = −m.
Thus we retrieve f(−m) = f((−1)m) = (−1)f(m) = −f(m).

If the homomorphism f : M → M ′ is bijective then of course an inverse
function f−1 : M ′ →M exists. For this function we have

f−1(f(m) + f(n)) = f−1(f(m+ n)) = m+ n = f−1(f(m)) + f−1(f(n))

and
f−1(rf(m)) = f−1(f(rm)) = rm = rf−1(f(m)) ,

for all m,n ∈ M and r ∈ R′. As f is surjective, so that f(m) and f(n) vary
over M ′ as m and n vary over M , we conclude that f−1 is a homomorphism
as well. If a bijective homomorphism f : M →M ′ exists (and so equivalently a
bijective homomorphism g : M ′ →M), we say that M and M ′ are isomorphic.
Such a bijective f is called an isomorphism.

In the same way we have homomorphisms between right R-modules, with
the corresponding analogues properties.

Arguably the most important result on homomorphisms is the first isomor-
phism theorem.

Lemma 1.4 (First isomorphism theorem). Let f : M → M ′ be a homomor-
phism between (left- or right-) R-modules M and M ′. Then the kernel ker(f) ⊆
M and image Im(f) ⊆M ′ are submodules, and there exists an isomorphism

[f ] : M/ ker(f) ∼= Im(f) ,

given explicitly by [f ]([x]) = f(x), for [x] ∈M/ ker(f) with x ∈M .

Proof. It is a standard exercise to show that ker(f) and Im(f) are submodules of
M and M ′, respectively. To show that [f ] : M/ ker(f)→ Im(f) is well-defined,
note that indeed f(x) ∈ Im(f). If we have [x] = [y] ∈ M/ ker(f) for some
x, y ∈ M , then x − y ∈ ker(f) and so f(x) − f(y) = f(x − y) = 0. Thus the
definition [f ]([x]) := f(x) is unambiguous. One then easily verifies that [f ] is
a homomorphism. Clearly Im([f ]) = Im(f), and if [f ]([x]) = f(x) = 0 then
x ∈ ker(f) and so [x] = 0. This shows that [f ] is indeed an isomorphism.
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2 The Jacobson Radical and Local Rings

We now present the main result of this document, which shows that a number
of definitions are equivalent. These describe the so-called Jacobson radical.

Theorem 2.1. For x ∈ R the following are equivalent.

1L. Every maximal left ideal contains x.

2L. The element x is in the annihilator of every simple left module of R.
That is, for every simple left module M of R and every m ∈M , we have
xm = 0.

3L. For every r ∈ R, the element 1 − rx has a left inverse. In other words,
there is a u ∈ R such that u(1− rx) = 1.

4. For all r, s ∈ R, the element 1− rxs has a double-sided inverse. In other
words, there is a u ∈ R such that u(1− rxs) = (1− rxs)u = 1.

1R. Every maximal right ideal contains x.

2R. The element x is in the annihilator of every simple right module of R.
That is, for every simple right module M of R and every m ∈M , we have
mx = 0.

3R. For every r ∈ R, the element 1− xr has a right inverse.

Proof. [1L =⇒ 2L]: Suppose that every maximal left ideal contains x, and fix
a simple left module M . Let m ∈ M be given. If m = 0 then clearly xm = 0,
and so we may assume that m 6= 0. Consider the function

fm : R→M (2)

fm(r) = rm .

One verifies that if we view R as a left R-module, then fm becomes a homo-
morphism. We denote its image by Rm ⊆M . Since 0 6= m = 1m ∈ Rm, we see
that Rm 6= {0}. Thus, since M is simple, it must hold that Rm = M and so fm
is surjective. Denote by I ⊆ R the kernel of fm. Then I is a submodule of R,
with the latter seen as a left R-module, and so I is a left ideal of R. We conclude
by the first isomorphism theorem (Lemma 1.4) that we have an isomorphism of
left R-modules

[fm] : R/I →M (3)

[fm]([r]) = rm ,

where [r] ∈ R/I denotes the class of r ∈ R. Since M is a simple module, so is
R/I. We therefore conclude from Lemma 1.3 that I is a maximal left-ideal. In
particular, we find x ∈ I. This implies that [0] = [x] ∈ R/I, and so

xm = [fm]([x]) = [fm]([0]) = 0 . (4)
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[2L =⇒ 1L]: Now suppose x is in the annihilator of every simple left
module of R. Let I be a given maximal left ideal of R. From Lemma 1.3 we
know that R/I is a simple left module. Thus, xm = 0 for all m ∈ R/I. In
particular, take m = [1]. Then 0 = x[1] = [x], from which it follows that x ∈ I.

[1L =⇒ 4] By the previous steps, we know that 1L and 2L are equivalent. In
particular, if x is contained in every maximal left ideal of R, then for every simple
left module M and every m ∈ M , we have xm = 0. Thus, given any r, s ∈ R
and m in some simple left module M , we see that (rxs)m = r(x(sm)) = r0 = 0,
as sm ∈ M . We therefore find that rxs is likewise in the annihilator of any
simple left module, and so is contained in every maximal left ideal of R. Thus,
we only need to show that 1 − x has a two-sided inverse, for every x that is
contained in the intersection of all maximal left ideals of R.

We first show that a left-inverse exists, so that u(1−x) = 1 for some u ∈ R.
Suppose otherwise, then the left ideal R(1 − x) := {r(1 − x) | r ∈ R} does not
contain 1, and so is proper. It follows that a maximal left ideal I exists such
that R(1−x) ⊆ I. In particular, we have 1−x ∈ I. Since by assumption we also
have x ∈ I, we find 1 = (1 − x) + x ∈ I. This contradicts that I is maximum,
and so indeed u(1− x) = 1 for some u ∈ R.

Rewriting u(1− x) = 1, we find u− ux = 1 and so u = 1 + ux = 1− (−ux).
Since −ux is likewise contained in the intersection of all maximal left ideals, we
may use the same argument as before to conclude that v(1− (−ux)) = vu = 1
for some v ∈ R. Combined with the fact that u(1− x) = 1, we find

v = v1 = v(u(1− x)) = (vu)(1− x) = 1− x . (5)

Thus (1− x)u = u(1− x) = 1, which proves that 1− x indeed has a two-sided
inverse.

[4 =⇒ 3L] This follows immediately by setting s = 1.
[3L =⇒ 1L] Suppose I is a maximal left ideal not containing x. Then

the left ideal Rx + I := {rx + y | r ∈ R and y ∈ I} strictly contains I (as
x ∈ Rx+ I but x /∈ I). Since I is maximal, we find Rx+ I = R. In particular,
some r ∈ R and y ∈ I exist such that rx + y = 1. Rewriting this expression
gives 1 − rx = y ∈ I. But by assumption, 1 − rx has a left-inverse, so that
1 ∈ R(1 − rx) ∈ I. This contradicts the assumption that I is a maximal, and
therefore proper ideal, and we conclude that x has to be contained in every
maximal left ideal of R.

The proofs for 1R =⇒ 2R, 2R =⇒ 1R, 1R =⇒ 4, 4 =⇒ 3R and
3R =⇒ 1R are completely analogous, so that the result follows.

Definition 2.2. Given a ring R, the set of all elements x ∈ R satisfying one of
the equivalent statements of Theorem 2.1 is called the Jacobson radical of R.

Note that by points 1R and 1L, the Jacobson radical is a two-sided ideal. Next,
we explore what it means for a ring to have only one right (or left) maximal
ideal.

Theorem 2.3. A ring has only one maximal left ideal, if and only if it has only
one maximal right ideal.
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Proof. We will only show that if a ring R has a single maximal left ideal, it has
a single maximal right ideal. The reverse direction is fully analogues. Thus,
suppose R has a single maximal left ideal J . By Theorem 2.1, J is the Jacobson
radical of R and is therefore two-sided. This means R/J has a well-defined ring
structure, with multiplication given by [x][y] = [xy] for [x], [y] ∈ R/J the classes
of x, y ∈ R, respectively. Note also that [0] 6= [1], as 1 /∈ J .

We claim that every non-zero element of R/J has a two-sided inverse. To
this end, let [x] ∈ R/J be given such that [x] 6= [0]. It follows that x /∈ J ,
so that the left-ideal J + Rx strictly contains J . By maximality of this latter
ideal, we find that J + Rx = R. Thus, there exist y ∈ R and m ∈ J such that
1 = m + yx. This in turn implies that [y][x] = [yx] = [1 − m] = [1] ∈ R/J ,
as m ∈ J . To show that likewise [x][y] = [1], note that y /∈ J , as otherwise we
would arrive at the contradiction [1] = [y][x] = [0][x] = [0]. Thus in precisely
the same way as for [x], we see that there is an element [z] ∈ R/J such that
[z][y] = [1]. But then

[z] = [z][1] = [z]([y][x]) = ([z][y])[x] = [1][x] = [x] .

We see that [y][x] = [1] = [z][y] = [x][y], so that [x] indeed has the two-sided
inverse [y].

Now let K ⊆ R be any maximal right ideal. By definition of the Jacobson
radical — more precisely point 1R in Theorem 2.1 — we see that J ⊆ K. If
J 6= K, then we may pick an element x ∈ K \J . It follows that [x] is a non-zero
element of R/J , so that a two-sided inverse [y] ∈ R/J exists. In particular, we
have [x][y] = [1]. This means that xy − 1 ∈ J ⊆ K. However, since K is a
right ideal containing x, we have xy ∈ K and so xy − (xy − 1) = 1 ∈ K. This
contradicts the fact that K is maximal, and we conclude that instead J = K.
Thus, the only maximal right ideal of R is J , which proves the claim.

Theorem 2.3 motivates the following definition.

Definition 2.4. A ring with only one maximal left ideal (equivalently only one
maximal right ideal) is called a local ring.

Note that for any local ring, the unique maximal left ideal is necessarily equal
to its Jacobson radical, by Theorem 2.1. Similarly, its unique maximal right
ideal is given by its Jacobson radical and thus all three ideals are equal and are
two-sided.

Lemma 2.5. For R a local ring with Jacobson radical J , we may write

J = {x ∈ R | x has no two-sided inverse } (6)

= {x ∈ R | x has no left inverse }
= {x ∈ R | x has no right inverse } .

Proof. If x ∈ R has a two-sided inverse, then it clearly also has both a left and
a right inverse. Now suppose x has a left inverse. That is, there exists a y ∈ R
such that yx = 1. If we have x ∈ J then likewise 1 = yx ∈ J , contradicting the
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fact that J is a maximal ideal. Note that these conclusions still hold if we drop
the assumption that R is local. We only need that 1 /∈ J , which holds for any
ring as the Jacobson radical J is contained in at least one maximal left ideal.
Thus, if x has a left inverse then x /∈ J , and of course the same conclusion holds
if x has a right inverse.

Now suppose we have x /∈ J and consider the left ideal Rx ⊆ R. We either
have that Rx = R, or that Rx is contained in a maximal left ideal, which is
then necessarily J (here we use that R is local). This latter option is excluded
as x /∈ J . Thus Rx = R and so ux = 1 for some u ∈ R. Analogously, we find
xv = 1 for some v ∈ R. Finally we see that u = u1 = u(xv) = (ux)v = v, so
that x has the two-sided inverse u = v. This completes the proof.

We may now give an alternative characterization of a local ring.

Proposition 2.6. Given a ring R, the following are equivalent:

1. The ring R is local;

2. Whenever x, y ∈ R both do not have a left inverse, their sum x + y also
has no left inverse;

3. Whenever x, y ∈ R both do not have a right inverse, their sum x+ y also
has no right inverse.

Proof. Let us denote by SL and SR the set of elements in R that have no left
inverse and those that have no right inverse, respectively. If we assume point 1
to hold, then Lemma 2.5 tells us that SR and SL are both equal to the Jacobson
radical. In particular both 2 and 3 then hold true.

Now assume 2 to hold. We will first show that SL is a left ideal. To this end,
note that clearly 0 ∈ SL. Suppose we are given x ∈ SL and r ∈ R. If rx has a
left inverse u then 1 = u(rx) = (ur)x, contradicting that x ∈ SL. Thus we find
rx ∈ SL. By assumption, SL is closed under addition, so that it is indeed a left
ideal. Next, note that SL is proper, as 1 /∈ SL. We claim that SL is the unique
maximal left ideal of R. To see why, let I ( R be any proper left ideal of R. If
I contains any element with a left inverse, then R = RI = I, contradicting our
assumption that I is proper. Thus, I ⊆ SL. This proves that SL is maximal,
and moreover tells us that SL is the unique maximal left ideal of R, as SL has
to contain every maximal ideal. Thus R has a unique maximal left ideal, and
so is indeed local. Showing that 3 implies 1 is of course analogous.

Recall that an element x ∈ R is called nilpotent if xn = 0 for some n ∈ N.
In representation theory, one often encounters rings where every element either
has a left inverse, or is nilpotent. In that case an element cannot be both.
For if xn = 0 and ux = 1, then 1 = unxn = un0 = 0 which contradicts our
assumptions on R. Such rings are necessarily local by the following proposition.

Proposition 2.7. If a ring R has the property that every element either has a
left inverse or is nilpotent then it is local. The same holds true if every element
either has a right inverse or is nilpotent. In both cases, the Jacobson radical
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consists of precisely all the nilpotent elements, and the other elements have two-
sided inverses.

Proof. We only show the case where every element either has a left inverse or is
nilpotent, the case for right inverses is similar. As an element cannot both be
nilpotent and have a left inverse, Proposition 2.6 tells us that R is local if the
sum of any two nilpotent elements is again nilpotent. Therefore, let x, y ∈ R
be nilpotent and let r ∈ R be any element. We first claim that rx is again
nilpotent. Suppose otherwise, then rx has a left-inverse, say s ∈ R. This gives
us 1 = s(rx) = (sr)x, contradicting that x has no left inverse. Now suppose
that x + y has a left inverse, say u ∈ R. Then ux + uy = u(x + y) = 1, and
so y′ = 1− x′, where x′ := ux and y′ := uy are both nilpotent by our previous
claim. However, if x′n = 0 then

(1 + x′ + x′2 + · · ·+ x′n−1)y′ (7)

= (1 + x′ + x′2 + · · ·+ x′n−1)(1− x′)
= 1 + x′ + x′2 + · · ·+ x′n−1 − (x′ + x′2 + · · ·+ x′n)

= 1− x′n = 1 .

This contradicts the fact that y′ is nilpotent, and we conclude that x + y has
to be nilpotent instead. Thus we see that R is indeed a local ring. By Lemma
2.5, the Jacobson radical consists of all the nilpotent elements, whereas all other
elements have two-sided inverses.

In the following section we need:

Lemma 2.8. Let R be a local ring with Jacobson radical J . Every simple left R-
module is isomorphic to R/J (as left modules) and every simple right R-module
is isomorphic to R/J (as right modules).

Proof. Let M be a simple left R-module. As in the proof of Theorem 2.1, we
find a left ideal I ⊆ R such that M is isomorphic to R/I as left modules. By
Lemma 1.3, the left ideal I is maximal and so necessarily equal to J . Thus
M ∼= R/J . The proof for right modules is similar.

We finish this section with a result that is useful though intuitively clear.

Lemma 2.9. Let R be a ring with Jacobson radical J . The Jacobson radical of
the quotient ring S = R/J equals {0}.

Proof. Let x ∈ S be contained in the Jacobson radical of S. We may write x
as the class of some element r ∈ R, so x = [r]. By point 3L of Theorem 2.1,
for any t ∈ R the element [1] − [t][r] ∈ S has a left inverse [u]. Thus we have
[1] = [u]([1]− [t][r]) = [u]− [utr], which implies that 1− u+ utr ∈ J . Again by
Theorem 2.1, this means that 1− (1− u+ utr) = u− utr has a left inverse, say
that v(u−utr) = 1. But then we find (vu)(1− tr) = 1, which shows that 1− tr
has a left inverse. This result holds for any choice of t ∈ R, and so we conclude
that r ∈ J . In other words, we find [r] = [0]. As x = [r] was chosen arbitrarily
from the Jacobson radical of S, the result follows.
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3 Algebras and Matrix-Rings

We now have a closer look at algebras and rings of matrices. The first notion
we need is:

Definition 3.1. Let M be a left module over the ring R. A composition series
of M is a finite set of submodules M0, . . . ,Mk ⊆M such that

{0} = M0 (M1 ( · · · (Mk = M

with the property that no submodules can be inserted. In other words, if N ⊆M
is a submodule such that Mi−1 ⊆ N ⊆ Mi for some i ∈ {1, . . . , k}, then N =
Mi−1 or N = Mi.

The same notion of course exists for right modules.

Lemma 3.2. Let A be a real algebra and M a finite dimensional left module
over A. Then M has a composition series.

Proof. We prove the statement by induction on the dimension of M . If M = {0}
then a composition series is given by M0 = M and if M is one-dimensional then
a composition series is given by {0} ( M . So, suppose a composition series
exists for any left module of dimension ` or less, for some ` > 0. Let M have
dimension `+ 1 and let N ( M be any proper submodule of M with maximal
dimension among all proper submodules. Then no submodule can sit between
N and M . Moreover, N has dimension ` or less, and thus has a composition
series

{0} = N0 ( N1 ( · · · ( Nk = N .

We then get a composition series for M , given by

{0} = N0 ( N1 ( · · · ( Nk = N (M ,

which proves the lemma.

The following observation gives another way of viewing composition series.

Lemma 3.3. Let M be a left module over a ring R with proper submodule N (
M . The quotient module M/N is simple, if and only if there is no submodule
K that sits strictly between N and M , N ( K (M .

Proof. Note that the quotient M/N is non-zero, as N 6= M . If we have a
submodule K satisfying N ( K ( M , then M/N has the non-zero, proper
submodule K/N . Thus, M/N is not simple.

Now suppose conversely that M/N is not simple. Say we have a non-zero,
proper submodule {0} ( P (M/N . Consider the set

Q = {m ∈M | [m] ∈ P} ,

where [m] ∈ M/N denotes the class of m. One verifies that Q is a submodule
of M . Moreover, as [n] = [0] ∈ P for all n ∈ N , we see that N ⊆ Q. Moreover,
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if p ∈ P is any non-zero element, then we may write p = [m] for some m ∈ M .
Necessarily m /∈ N , as p 6= 0, and so we find N ( Q. Equality between Q and
M would imply P = M/N , and so instead we have Q ( M . Thus we find the
submodule Q sitting strictly in between N and M .

Next, we obtain an important consequence of the existence of a composition
series.

Proposition 3.4. Let A be a real algebra that is also a local ring. Denote by J
the Jacobson radical of A and suppose the quotient ring A/J is finite dimensional
as a real vector space. Given any finite dimensional left module M over A, the
real dimension of A/J divides that of M .

Proof. Let us denote the dimension of A/J , seen as a real vector space, by `.
First of all, by Lemma 3.2 M has a composition series, say

{0} = M0 (M1 ( · · · (Mk = M .

Next, it follows from Lemma 3.3 that every quotient module Mi/Mi−1, for
i ∈ {1, . . . , k}, is simple. Thus by Lemma 2.8, each of these is isomorphic to
A/J . This tells us in particular that M1

∼= M1/M0
∼= A/J has real dimension

`. Finally, we prove by induction that dim(Mi) = i` for all i ∈ {1, . . . , k}. To
this end, suppose that dim(Mi−1) = (i− 1)`. It follows that

dim(Mi) = dim(Mi−1) + dim(Mi/Mi−1) (8)

= dim(Mi−1) + dim(A/J) = (i− 1)`+ ` = i` .

We therefore find dim(M) = dim(Mk) = k`, which completes the proof.

The analogous statement of Proposition 3.4 for right modules of course holds as
well. The following examples appear frequently. In fact, it can be shown that,
together with A/J ∼= R, these are the only possibilities.

Example 3.5. Suppose the real algebra A is a local ring with Jacobson radical
J . If A/J ∼= C as real algebras, then every finite dimensional (left or right)
module over A has even dimension. If instead A/J ∼= H (the quaternions), then
the dimension of every module over A, when finite, is divisible by 4.

We next prepare for Nakayama’s lemma, which will give us more properties of
the Jacobson radical of a finite dimensional algebra.

Given a ring R, we may consider the set Mat(R;n) of n × n matrices
B = (bi,j) with coefficients in R. If we define addition to be entry-wise (i.e.
(B+C)i,j = Bi,j+Ci,j) and multiplication as is usual for matrices (so (BC)i,j =∑n

k=1Bi,kCk,j) then this makes Mat(R;n) into a ring. The multiplicative
identity element of Mat(R;n) is given by the identity matrix Id, defined by
Idi,j = δi,j . Here δi,j = 1 if and only if i = j, with δi,j = 0 otherwise.

Given any subset I of R, we may define the set Mat(I;n) ⊆ Mat(R;n) as
consisting of those matrices that have all of their coefficients in I. It is not hard
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to show that Mat(I;n) becomes a left or right ideal of Mat(R;n) if I is a left
or right ideal of R, respectively.

The following result tells us that certain matrices in Mat(R;n) always have
two-sided inverses.

Lemma 3.6. Let R be a ring with Jacobson radical J and let N ∈ Mat(J ;n)
be given. There exists a matrix B ∈ Mat(J ;n) such that (Id +B)(Id +N) =
(Id +N)(Id +B) = Id.

Proof. It suffices to show that B ∈ Mat(J ;n) exists such that (Id +B)(Id +N) =
Id. To see why, note that the same argument applied to B then gives a C ∈
Mat(J ;n) such that (Id +C)(Id +B) = Id. But then

(Id +N) = ( (Id +C)(Id +B) )(Id +N) = (Id +C)( (Id +B)(Id +N) ) = (Id +C) .

Thus (Id +N)(Id +B) = (Id +C)(Id +B) = Id.
Let us write N = (ni,j), so that (Id +N)i,j = ni,j+δi,j . The proof essentially

uses Gaussian elimination to construct B, though we need to be careful with
inverting elements. However, as ni,i ∈ J for all i ∈ {1, . . . , n}, point 4 of
Theorem 2.1 tells us that the diagonal element 1 + ni,i has a two-sided inverse.

Let us first define B1 ∈ Mat(J ;n) by (B1)i,j = δ1,jni,j(1 + n1,1)−1. Note
that indeed (B1)i,j ∈ J for all i, j ∈ {1, . . . , n}, as ni,j ∈ J . It follows that

(B1(Id +N))i,j =

n∑
k=1

(B1)i,k(Id +N)k,j (9)

=

n∑
k=1

δ1,kni,k(1 + n1,1)−1(Id +N)k,j

= ni,1(1 + n1,1)−1(Id +N)1,j .

Substituting j = 1 in Equation (9) above, we obtain

(B1(Id +N))i,1 = ni,1(1 + n1,1)−1(Id +N)1,1 (10)

= ni,1(1 + n1,1)−1(1 + n1,1) = ni,1 = Ni,1 .

Next, we note that

(Id−B1)(Id +N) = (Id +N)−B1(Id +N) (11)

= Id +(N −B1(Id +N)) = Id +N ′ ,

where N ′ := N − B1(Id +N). As N,B1 ∈ Mat(J ;n), we likewise find N ′ ∈
Mat(J ;n). Moreover, it follows from Equation (10) that

N ′i,1 = Ni,1 − (B1(Id +N))i,1 = Ni,1 −Ni,1 = 0 , (12)

for all i ∈ {1, . . . , n}. Summarizing, we find that (Id−B1)(Id +N) can again be
written as Id +N ′, whereN ′ ∈ Mat(J ;n) and withN ′i,1 = 0 for all i ∈ {1, . . . , n}.
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Let us therefore now assume we have a matrix M = (mi,j) ∈ Mat(J ;n)
together with an ` ≥ 2 such that Mi,j = 0 for all i ∈ {1, . . . , n} and j < `. We
will show that a matrix B` ∈ Mat(J ;n) exists such that (Id−B`)(Id +M) =
Id +M ′, where M ′ ∈ Mat(J ;n) satisfies M ′i,j = 0 for all i ∈ {1, . . . , n} and

j ≤ `. To this end, we define B` by (B`)i,j = δ`,jmi,j(1 + m`,`)
−1 ∈ J . As

before, we obtain

(B`(Id +M))i,j =

n∑
k=1

(B`)i,k(Id +M)k,j (13)

=

n∑
k=1

δ`,kmi,k(1 +m`,`)
−1(Id +M)k,j

= mi,`(1 +m`,`)
−1(Id +M)`,j .

Setting j = `, we get (B`(Id +M))i,` = mi,`(1 + m`,`)
−1(Id +M)`,` = mi,`.

Moreover, for j < ` we have M`,j = 0 and so (Id +M)`,j = Id`,j = δ`,j = 0.
Thus for all j < ` and i ∈ {1, . . . , n} we obtain (B`(Id +M))i,j = 0 = mi,j . In
summary, we find (B`(Id +M))i,j = Mi,j for all j ≤ ` and i ∈ {1, . . . , n}. Thus
if we define M ′ := M −B`(Id +M) ∈ Mat(J ;n) then M ′i,j = Mi,j−Mi,j = 0 for
all j ≤ ` and i ∈ {1, . . . , n}. Of course as before, (Id−B`)(Id +M) = Id +M ′.

We see that we may inductively find matrices B1, . . . , Bn ∈ Mat(J ;n) such
that

(Id−Bn) . . . (Id−B1)(Id +N) = (Id +K) (14)

for some K ∈ Mat(J ;n) with all of its columns equal to zero. In other words
K = 0, and so

(Id−Bn) . . . (Id−B1)(Id +N) = Id . (15)

Since we may write (Id−Bn) . . . (Id−B1) = Id +B for some B ∈ Mat(J ;n), the
proof is complete.

As a corollary, we obtain:

Proposition 3.7. Given a ring R with Jacobson radical J , the Jacobson radical
of Mat(R;n) equals Mat(J ;n).

Proof. Let X ∈ Mat(J ;n) and B,C ∈ Mat(R;n) be given. As Mat(J ;n) is a
two-sided ideal, we likewise have −BXC ∈ Mat(J ;n). But then Lemma 3.6
tells us that Id−BXC = Id +(−BXC) has a two-sided inverse in Mat(R;n).
By point 4 of Theorem 2.1, we see that X is contained in the Jacobson radical
of Mat(R;n).

Now suppose X is contained in the Jacobson radical of Mat(R;n). We need
to show that X ∈ Mat(J ;n), and so that Xi,j ∈ J for all i, j ∈ {1, . . . , n}. To
this end, we fix an index pair (k, `) with k, ` ∈ {1, . . . , n}. If we can show that
for any r ∈ R, 1 − rXk,` has a left-inverse in R, then point 3L of Theorem
2.1 indeed tells us that Xk,` ∈ J . Thus we now fix r ∈ R as well, and define
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the matrices B,C ∈ Mat(R;n) by Bi,j = rδ1,iδk,j and Ci,j = δ`,iδ1,j for all
i, j ∈ {1, . . . , n}. It follows that

(BXC)i,j =

n∑
p=1

n∑
q=1

Bi,pXp,qCq,j =

n∑
p=1

n∑
q=1

rδ1,iδk,pXp,qδ`,qδ1,j (16)

= rδ1,iXk,`δ1,j = rXk,`δ1,iδ1,j .

Since X is contained in the Jacobson radical of Mat(R;n), point 4 of Theorem
2.1 tells us that Id−BXC has a two-sided inverse U ∈ Mat(R;n). In particular
for the (1, 1)-entry, the identity Id = U(Id−BXC) gives us

1 = (U(Id−BXC))1,1 =

n∑
p=1

U1,p(Id−BXC)p,1 (17)

=

n∑
p=1

U1,p(δp,1 − rXk,`δ1,pδ1,1) =

n∑
p=1

δp,1U1,p(1− rXk,`)

= U1,1(1− rXk,`) .

Thus 1 − rXk,` indeed has a left-inverse, which shows that Xk,` ∈ J . We
conclude that X ∈ Mat(J ;n), which completes the proof.

The following famous lemma is extremely useful for showing that certain
modules vanish. It involves so-called finitely generated modules. A left-module
M over a ring R is called finitely generated if there exist finitely many elements
m1, . . . ,mp ∈M such that any element m ∈M can be written (not necessarily
uniquely) as

m = r1m1 + · · ·+ rpmp (18)

for some r1, . . . , rp ∈ R. Note that if R is a real algebra with M finite-
dimensional, then M is always finitely generated. To see why, choose for in-
stance the generating set {m1, . . . ,mp} ⊆ M equal to some basis for M over
the real numbers. In that case we may even choose all r1, . . . , rp in Equation
(18) from the copy of R in R.

In what follows, if M is a left-module over the ring R and I is a left-ideal of
R, we denote by IM ⊆M the set consisting of all elements that may be written
as finite sums of elements rm with r ∈ I and m ∈ M . One readily shows that
IM is a submodule of M .

Theorem 3.8 (Nakayama’s lemma, non-commutative case). Let R be a ring
with Jacobson radical J and M a finite generated left-module over R. If JM =
M then necessarily M = 0.

Proof. We fix some generating set {m1, . . . ,mp} for M . As we allow the possi-
bility that mi = 0 for some i, we may assume that p ≥ 1. From M = JM we
see that each mi, for i ∈ {1, . . . , p}, may be written as

mi =

Ni∑
k=1

rk,ixk,i , (19)
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where Ni ∈ N, rk,i ∈ J and xk,i ∈M for all k ∈ {1, . . . , Ni}. Since xk,i ∈M for
all i ∈ {1, . . . , p} and k ∈ {1, . . . , Ni}, we may further write

xk,i =

p∑
j=1

ak,i,jmj , (20)

for some ak,i,j ∈ R. Putting equations (19) and (20) together, we obtain

mi =

Ni∑
k=1

rk,i

p∑
j=1

ak,i,jmj =

p∑
j=1

(
Ni∑
k=1

rk,iak,i,j

)
mj =

p∑
j=1

ni,jmj , (21)

where

ni,j :=

Ni∑
k=1

rk,iak,i,j ∈ J . (22)

Thus, if we set m := (m1, . . . ,mp) and define N ∈ Mat(J ; p) by Ni,j = ni,j ,
then we may conveniently summarize Equation (21) by Idm = Nm, or

(Id−N)m = 0 . (23)

Now by Lemma 3.6, there exists a matrix C ∈ Mat(R; p) such that C(Id−N) =
Id. Applying C to both sides of Equation (23) then gives us

m = Idm = C(Id−N)m = 0 . (24)

Thus we find mi = 0 for all i ∈ {1, . . . , p}. As every element of M can be written
as a combination of the mi, we necessarily have M = 0, which completes the
proof.

Nakayama’s lemma has strong consequences for the Jacobson radical of a finite
dimensional real algebra. Just as we defined IM for a left ideal I and a module
M , we may define the ideals I2, I3 and so forth. In general, given a two-sided
ideal I ⊆ R, the two-sided ideal Ik consists of all finite sums of expressions
x1x2 . . . xk with x1, . . . , xk ∈ I. It is not hard to see that I(Ik) = Ik+1 for all
k > 0.

Theorem 3.9. Let A be a finite dimensional real algebra with Jacobson radical
J . There exists a positive integer k such that Jk = 0.

Remark 3.10. Theorem 3.9 tells us that, for finite dimensional real algebras,
every element of the Jacobson radical is nilpotent. More precisely, there exists
a single k ∈ N (independent of x) such that xk = 0 for all x ∈ J . In fact, given
any x1, . . . , xk ∈ J , we have x1x2 . . . xk = 0.

Proof of Theorem 3.9. Let us consider the descending chain of vector spaces

R ⊇ J ⊇ J2 ⊇ . . . .
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Every time we have Jp ) Jp+1, the real dimension of Jp+1 drops by at least 1
from that of Jp. As R is assumed finite dimensional, we see that for some k ∈ N
we have

Jk = Jk+1 = J(Jk) . (25)

Note that Jk is a finitely generated module over A, as Jk is finite dimensional.
Applying Nakayama’s lemma (Theorem 3.8) to Equation (25) then indeed yields
Jk = 0.
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