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We treat an important result on the local existence and uniqueness of solutions
to ODEs, called the Picard-Lindel6f theorem. The exposition here strongly
follows that of [1].

We first need the concept of a function that is locally Lipschitz in z:

Definition 1. Let U be an open subset of R x R™ and F : U — R"™ a function.
We write a point in U as (t,z) witht € R and x € R™. The function F is called
locally Lipschitz in = if for every (to,xo) € U there exist an open set V. C U
with (to,zo) € V and a number C > 0 such that

[E(t,z) — F(s,y)| < Cllz —yll, (1)
for all (t,z),(s,y) € V.
‘We then have:

Theorem 1 (The Picard-Lindelof Theorem). Let U be an open subset of R x R™
and F : U — R" a continuous function that is locally Lipschitz in x. Given
(to,x0) € U, there exists an € > 0 and a continuously differentiable function
v (to — €t +€) = R™ such that for allt € (tg — €, to+€) we have (¢,v(t)) € U
and q

271 = F (1) (2)

Moreover, let I, Iy C R be two open intervals and ~y; : I; — R™ fori € {1,2}
two continuously differentiable functions such that (t,~;(t)) € U and

Loilt) = F(t,(0), )

for all t € I, fori € {1,2}. If v1(s) = 72(s) for some s € Iy N Iy then
Y1 (t) = Y2(t) for allt € I} N I.

The proof of Theorem 1 uses a so-called contraction argument. To this end, we
need:



Definition 2. Let (X,d) be a metric space. A function G : X — X is called a
contraction if there exists a positive real number p < 1 such that

d(G(z),G(y)) < pd(z,y), (4)
forallz,y € X.

Lemma 1. Let (X, d) be a complete metric space and G : X — X a contraction.
There is a unique y € X such that G(y) = y. Moreover, for every x € X the
limit lim,, oo G™(x) exists and is given by y.

Proof. We first show uniqueness of the fixed point of G, assuming one exists.
Suppose y1,y2 € X satisfy G(y1) = y1 and G(y2) = y2. Then

d(y1,y2) = d(G(y1), G(y2)) < pd(y1,y2) - (5)
Thus
(1= md(y1,y2) <0 (6)
and, since p < 1, we obtain
d(y1,y2) < 0. (7)

Of course d(y1,y2) > 0 and so d(y1,y2) = 0, from which we see that y; = ya.
We now fix x € X and consider the sequence

z,G(z),G*(x),. .. . (8)

If G(z) = = then all elements of this sequence are the same and so the limit exists
and is given by x. Suppose therefore that G(x) # x, so that d(x,G(x)) # 0,
and let € > 0 be given. Since y < 1, there exists an N € N such that

N €(1—p)
< i G@) 9)

Now, given any m,n > N with m > n, we have

d(G"(2), G™ (2)) < d(G"(x),G" (@) + -+ +d(G"H(2),G™(x))  (10)

(.G (x))

= prd(z, G(@)(1+ it + -+ 1)

< (@, G@) L+ p+p? A+ )

= (e, G(@) —— < N (e, Gla)—— < e

Thus the sequence in (8) is Cauchy and, since X is complete, it has a limit
z = z(z) € X. Next, we fix ¢ > 0 and let N > 0 be such that n > N implies

d(G"(x),z2) < 11#. It follows that

d(z,G(2)) < d(z, GV (2)) + d(GVH(2), G(2)) (11)

1+p

< d(z,GNT(2)) + pd(GN (), 2) <

(1+p)=¢.



Thus for any ¢ > 0 we have d(z, G(z)) < €. This of course means d(z, G(z)) =0
and so G(z) = z. We conclude that at least one element y € X exists such that
G(y) = y. (We of course assume X is non-empty, so take any = € X and let
y = lim, 00 G™(z).) By our first result, such a y is unique. Thus, we find
y = lim,, o, G™(2) for all z € X, which completes the proof. O

To use Lemma 1, we next give an example of a complete metric space (see
Lemma 2 below), followed by a contraction (see lemmas 3 and 4 below).

Lemma 2. Let I CR be an open interval containing a point tg and K CR” a
compact subset containing a point xo. Define the set

Uft’:o :={y: I = K | v is continuous and v(ty) = o}, (12)
together with the map

dn,72) = supn(t) =2 ()]l (13)

Then d defines a metric on Z/{f)(t’f" and (UII;:O, d) is complete.

Proof. We first show that d defines a metric on Z/III;’:O. Since K is compact, there
is a C' > 0 such that ||z|| < C for all z € K. Therefore ||v;(t) — 72(t)|| < 2C for
all t € I and 1,7 € Z/lft’:o, which in turn shows that d(y1,72) € R>¢.

Next, it is clear from the definition that d(y1,v2) = d(7y2,7v1) for all 1,72 €
L{II;’;”O, and that d(y1,72) = 0 if and only if v = vs.

»Z0o

Finally, for all v1,72,7v3 € lefto we have

d(v1,73) = 21611? 71 (t) —v3(0)l| = St‘é? 71 () = 72(t) +72(t) — 3] (14)

< sup (wt) O]+ a(t) wn)
tel
< Sup 71 (t) = y2(t)[] + Sup 72 (t) —v3(t)]|

=d(v1,72) + d(v2,73) -

This shows that d is indeed a well-defined metric on Z/{II;’:O.

It remains to show that (L{II;’:D, d) is complete. To this end, let (y,), be a

Cauchy-sequence of elements in Z/{]K,;;”". Then for every ¢ > 0 there exists an

N, € N such that

d(Yn,Ym) = sup 7 (t) = v (8)|| < €, (15)

whenever m,n > N.. In particular, for any fixed s € I we have

17 (s) = vm(s)|| < € whenever m,n > N,, which shows that (v,(s)), is a
Cauchy-sequence in K. Since, this latter set is closed, we conclude that (7,,($))n
has a limit in K, which we will denote by v(s). The limit of (v,,), will of course



be the function v : t — ~(t), though we need to show that this function is
continuous and that the v, converge to it.

For the latter statement, fix € > 0 and s € I. Since lim, o Yn(s) = v(s),
there exists an M . € N such that n > M, . implies ||, (s) —v(s)|| < 1/3e. Let
k > Nyj3c and £ > max(Ny 3, Ms ) be given. We find

[7k(s) = ()l = N7k (s) —vels) +vels) = (sl (16)
< lv(s) = ve()l + [lve(s) = ()l
<1/3e+1/3e=2/3¢.

We therefore have
Sup [[7(s) = (s)ll < e (A7)

whenever k > Nj/3.. This shows that (v,), converges to 7, provided we can
show that this latter function lies in L{IKt’:“. To this end, note that by definition

of v we have
Y(to) = lim 7, (tp) = lim o = 0.
n—roo n—roo

To show that  is continuous, let s € I and € > 0 be given and fix any k € N
for which sup, ¢y ||k (u) — y(u)|| < 1/3e. Since ~; is continuous, there exists a
0 > 0 such that ||y (t) — yx(s)|] < 1/3e for all ¢t € I with |t — s| < . For any
such ¢ we have

() =) = () = (@) + % (t) = (s) +x(s) = (8] (18)
< @) = @O + v () = (I + v (s) = ()
<1/3¢+1/3e+1/3c=c¢.

Thus 7 is indeed continuous and we find v € Uft’:“ as the limit of (y,)n. This
completes the proof. O

Note that Z/{I{(t’fo is non-empty, as it contains the function that is constantly
equal to xg.

We now assume U is an open subset of R X R™ and F': U — R"™ a continuous
function that is locally Lipschitz in x, as in the setting of Theorem 1. Given
(to, o) € U, we know that there exists an open set V' C U containing (to, Zo)
such that

[F(t,z) = F(s, )|l < Cllz —yll, (19)
for some C' > 0 and all (¢, x), (s,y) € V. We may now pick a compact subset of V'

containing (tg, o), which is more specifically of the form [ty —d, to+ ] X B(xq, )
for some ¢ > 0. Here B(xg,d) denotes the closed ball in R™ around z(:

B(zg,6) :={v e R" | |[v — x| <} (20)

Note that Equation (19) then holds for all s, € [to—0, to+d] and z,y € B(xo, ).
As [to — 0,19 + 0] x B(xp,0) is compact and F' continuous, a constant D > 0
exists such that

I1E@, )| <D (21)



for all t € [to — 0, t0 + 0] and = € B(xo,0). In this setting, we have the result of
Lemma 3 below. To make the notation somewhat lighter, we will denote by I,
the open interval (tg — €,tg + €) C [tg — 0,19 + 0], for any 0 < € < 6.

Lemma 3. Let 0 < € < 9, % be given. There is a well-defined operator

. 7,B(z0,9),z0 B(z0,9),0
L: ufs,to - ufs,to

given by

(L) (#) = 20 + / F(r,y(r))dr (22)

for all v € Uﬁfﬁo’é)’ro.

Proof. As both v and F' are assumed continuous with the latter bounded, the
integral in Equation (22) is well-defined. It is clear that L(v): I. — R" is
a continuous function and that (£(v))(to) = . It remains to show that

(L(7))(t) € B(xo,0) for all t € I.. To this end, we note that

t t
(L) (t) = zoll = ‘ /t F(r,~(r))dr| < t [1E'(7,~(7))lldT (23)
0 0
t
< / Ddr| = D|t —tg] < De < 6.
to
Thus £ indeed maps UF(ZZ 00 ing itself, which completes the proof. O

Definition 3. We call the operator L of Lemma 8 the Picard operator.

The result we have been working towards is of course:

Lemma 4. Let 0 < € < 9, %,% be given. Then the Picard operator is a
contraction on L{ffg”a)’x“

Proof. Given ;1,72 € Z/{}j(tgfJ 0070 o direct calculation shows that

(L) () — (£(3)) (D) = / From(r) — Flrop())dr|  (24)
<[ 1) = Pl e
< / Cln(r) = ya(r)ldr
<

[t —to|C sup [|71(7) — v2(7) |l
Tel,

1
< eCd(v1,72) < §d(“¥1,72)-



Taking the supremum over ¢, we indeed arrive at

[y

d(L(m), L(2)) < 5d(71,72) 5 (25)

[\)

which completes the proof. O
As a corollary, we obtain

Corollary 1. Let F': U — R" be a continuous function that is locally Lipschitz
in x. Let (to,x0) € U be given and § > 0 be such that (to, o) € [to — 0,10 + 8] X
B(zg,0) CV CU as above. Then for e > 0 small enough, there is precisely one

€ L{f’(;o’é)’mo that is differentiable and satisfies

271 = F({t~(1) (26)

for allt € I..

Proof. Suppose v € L{IBf(fO’&)’w“ is differentiable and satisfies Equation (26).

Integrating this identity from to to t € I, gives

(1) — (to) = (1) — xp = / F(r,2(r)dr, (27)

to

and so
() = 20+ / F(r,2(m)dr = (£() (1) (25)

Conversely, if v = L(v) then
t
W0 =0+ [ Flram)dr. (29)
to

This implies that v is differentiable, by the fundamental theorem of calculus.
B(mové)yfﬁo

Moreover, the derivative satisfies Equation (26). In conclusion, v € U;

is differentiable and satisfies Equation (26) if and only if it is a ﬁxed pomt of

L. By Lemma 4, £ is a contraction on Z/{I z)o B(z0,0).70 for small enough €, so that

Lemma 1 indeed gives us a unique fixed point. This completes the proof. O

We now have everything in place to prove the Picard-Lindel6f theorem, Theorem
1.

Proof of Theorem 1. Existence of a local solution ~ follows directly from Corol-

lary 1. Since we have
d
271 = F{t7(1) (30)

for all ¢ € I, it follows that - is continuously differentiable.



Now suppose we have two solutions ~;: I; — R™, ¢ € {1,2}, and suppose
71(8) = 12(s) for some s € I N I,. We define the set

J = {te]lﬂfg |’Yl(t):’}/2(t)} (31)

It is clear that J is a closed subset of the open interval I; N I and, since it
contains s, we see that J is non-empty. Now let ¢ty € J be given and write
xo = 71(to) = 72(to). By Corollary 1, there exist constants 6 > 0 and e; such

that for all 0 < € < €1, the set Z/{B(mo 9020 contains precisely one function  that
is differientable and solves Equatlon (30) for ¢t € I.. Here as before, we write
I. := (to — €,to + €). Since v1(tg) = y2(to) = xo, we may choose €5 > 0 small
enough such that I, C I} N I and 7;(I.,) € B(xo,9) for i € {1,2}. Then if

102l € Up Blwo.0)20 otk solve

we choose any 0 < € < €1, €2, we see that v;
B(ZL’(),(;),:L’O

Equation (30) for ¢t € I, whereas U contains only one such solution.
We conclude that v1|;, = ¥2 = (to — €,tg+¢€) C J. This shows that
J is an open set. Thus J C Il N Ig is non-empty, open and closed, and so we
see that J = I; N I5. This completes the proof. O
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