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We treat an important result on the local existence and uniqueness of solutions
to ODEs, called the Picard-Lindelöf theorem. The exposition here strongly
follows that of [1].

We first need the concept of a function that is locally Lipschitz in x:

Definition 1. Let U be an open subset of R×Rn and F : U → Rn a function.
We write a point in U as (t, x) with t ∈ R and x ∈ Rn. The function F is called
locally Lipschitz in x if for every (t0, x0) ∈ U there exist an open set V ⊆ U
with (t0, x0) ∈ V and a number C > 0 such that

‖F (t, x)− F (s, y)‖ ≤ C‖x− y‖ , (1)

for all (t, x), (s, y) ∈ V .

We then have:

Theorem 1 (The Picard-Lindelöf Theorem). Let U be an open subset of R×Rn
and F : U → Rn a continuous function that is locally Lipschitz in x. Given
(t0, x0) ∈ U , there exists an ε > 0 and a continuously differentiable function
γ : (t0− ε, t0 + ε)→ Rn such that for all t ∈ (t0− ε, t0 + ε) we have (t, γ(t)) ∈ U
and

d

dt
γ(t) = F (t, γ(t)) . (2)

Moreover, let I1, I2 ⊆ R be two open intervals and γi : Ii → Rn for i ∈ {1, 2}
two continuously differentiable functions such that (t, γi(t)) ∈ U and

d

dt
γi(t) = F (t, γi(t)) , (3)

for all t ∈ Ii, for i ∈ {1, 2}. If γ1(s) = γ2(s) for some s ∈ I1 ∩ I2 then
γ1(t) = γ2(t) for all t ∈ I1 ∩ I2.

The proof of Theorem 1 uses a so-called contraction argument. To this end, we
need:
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Definition 2. Let (X, d) be a metric space. A function G : X → X is called a
contraction if there exists a positive real number µ < 1 such that

d(G(x), G(y)) ≤ µd(x, y) , (4)

for all x, y ∈ X.

Lemma 1. Let (X, d) be a complete metric space and G : X → X a contraction.
There is a unique y ∈ X such that G(y) = y. Moreover, for every x ∈ X the
limit limn→∞Gn(x) exists and is given by y.

Proof. We first show uniqueness of the fixed point of G, assuming one exists.
Suppose y1, y2 ∈ X satisfy G(y1) = y1 and G(y2) = y2. Then

d(y1, y2) = d(G(y1), G(y2)) ≤ µd(y1, y2) . (5)

Thus

(1− µ)d(y1, y2) ≤ 0 (6)

and, since µ < 1, we obtain

d(y1, y2) ≤ 0 . (7)

Of course d(y1, y2) ≥ 0 and so d(y1, y2) = 0, from which we see that y1 = y2.
We now fix x ∈ X and consider the sequence

x,G(x), G2(x), . . . . (8)

If G(x) = x then all elements of this sequence are the same and so the limit exists
and is given by x. Suppose therefore that G(x) 6= x, so that d(x,G(x)) 6= 0,
and let ε > 0 be given. Since µ < 1, there exists an N ∈ N such that

µN <
ε(1− µ)

d(x,G(x))
. (9)

Now, given any m,n ≥ N with m > n, we have

d(Gn(x), Gm(x)) ≤ d(Gn(x), Gn+1(x)) + · · ·+ d(Gm−1(x), Gm(x)) (10)

≤ µnd(x,G(x)) + · · ·+ µm−1d(x,G(x))

= µnd(x,G(x))(1 + µ+ µ2 + · · ·+ µm−1−n)

≤ µnd(x,G(x))(1 + µ+ µ2 + . . . )

= µnd(x,G(x))
1

1− µ
≤ µNd(x,G(x))

1

1− µ
< ε .

Thus the sequence in (8) is Cauchy and, since X is complete, it has a limit
z = z(x) ∈ X. Next, we fix ε′ > 0 and let N > 0 be such that n ≥ N implies

d(Gn(x), z) < ε′

1+µ . It follows that

d(z,G(z)) ≤ d(z,GN+1(x)) + d(GN+1(x), G(z)) (11)

≤ d(z,GN+1(x)) + µd(GN (x), z) <
ε′

1 + µ
(1 + µ) = ε′ .
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Thus for any ε′ > 0 we have d(z,G(z)) < ε′. This of course means d(z,G(z)) = 0
and so G(z) = z. We conclude that at least one element y ∈ X exists such that
G(y) = y. (We of course assume X is non-empty, so take any x ∈ X and let
y = limn→∞Gn(x).) By our first result, such a y is unique. Thus, we find
y = limn→∞Gn(x) for all x ∈ X, which completes the proof.

To use Lemma 1, we next give an example of a complete metric space (see
Lemma 2 below), followed by a contraction (see lemmas 3 and 4 below).

Lemma 2. Let I ⊆ R be an open interval containing a point t0 and K ⊆ Rn a
compact subset containing a point x0. Define the set

UK,x0

I,t0
:= {γ : I → K | γ is continuous and γ(t0) = x0} , (12)

together with the map

d(γ1, γ2) := sup
t∈I
‖γ1(t)− γ2(t)‖ . (13)

Then d defines a metric on UK,x0

I,t0
and (UK,x0

I,t0
, d) is complete.

Proof. We first show that d defines a metric on UK,x0

I,t0
. Since K is compact, there

is a C > 0 such that ‖x‖ < C for all x ∈ K. Therefore ‖γ1(t)− γ2(t)‖ < 2C for

all t ∈ I and γ1, γ2 ∈ UK,x0

I,t0
, which in turn shows that d(γ1, γ2) ∈ R≥0.

Next, it is clear from the definition that d(γ1, γ2) = d(γ2, γ1) for all γ1, γ2 ∈
UK,x0

I,t0
, and that d(γ1, γ2) = 0 if and only if γ1 = γ2.

Finally, for all γ1, γ2, γ3 ∈ UK,x0

I,t0
we have

d(γ1, γ3) = sup
t∈I
‖γ1(t)− γ3(t)‖ = sup

t∈I
‖γ1(t)− γ2(t) + γ2(t)− γ3(t)‖ (14)

≤ sup
t∈I

(
‖γ1(t)− γ2(t)‖+ ‖γ2(t)− γ3(t)‖

)
≤ sup

t∈I
‖γ1(t)− γ2(t)‖+ sup

t∈I
‖γ2(t)− γ3(t)‖

= d(γ1, γ2) + d(γ2, γ3) .

This shows that d is indeed a well-defined metric on UK,x0

I,t0
.

It remains to show that (UK,x0

I,t0
, d) is complete. To this end, let (γn)n be a

Cauchy-sequence of elements in UK,x0

I,t0
. Then for every ε > 0 there exists an

Nε ∈ N such that

d(γn, γm) := sup
t∈I
‖γn(t)− γm(t)‖ < ε , (15)

whenever m,n ≥ Nε. In particular, for any fixed s ∈ I we have
‖γn(s) − γm(s)‖ < ε whenever m,n ≥ Nε, which shows that (γn(s))n is a
Cauchy-sequence in K. Since, this latter set is closed, we conclude that (γn(s))n
has a limit in K, which we will denote by γ(s). The limit of (γn)n will of course
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be the function γ : t 7→ γ(t), though we need to show that this function is
continuous and that the γn converge to it.

For the latter statement, fix ε > 0 and s ∈ I. Since limn→∞ γn(s) = γ(s),
there exists an Ms,ε ∈ N such that n > Ms,ε implies ‖γn(s)− γ(s)‖ < 1/3ε. Let
k > N1/3ε and ` > max(N1/3ε,Ms,ε) be given. We find

‖γk(s)− γ(s)‖ = ‖γk(s)− γ`(s) + γ`(s)− γ(s)‖ (16)

≤ ‖γk(s)− γ`(s)‖+ ‖γ`(s)− γ(s)‖
< 1/3ε+ 1/3ε = 2/3ε .

We therefore have
sup
s∈I
‖γk(s)− γ(s)‖ < ε (17)

whenever k > N1/3ε. This shows that (γn)n converges to γ, provided we can

show that this latter function lies in UK,x0

I,t0
. To this end, note that by definition

of γ we have
γ(t0) = lim

n→∞
γn(t0) = lim

n→∞
x0 = x0 .

To show that γ is continuous, let s ∈ I and ε > 0 be given and fix any k ∈ N
for which supu∈I ‖γk(u) − γ(u)‖ < 1/3ε. Since γk is continuous, there exists a
δ > 0 such that ‖γk(t) − γk(s)‖ < 1/3ε for all t ∈ I with |t − s| < δ. For any
such t we have

‖γ(t)− γ(s)‖ = ‖γ(t)− γk(t) + γk(t)− γk(s) + γk(s)− γ(s)‖ (18)

≤ ‖γ(t)− γk(t)‖+ ‖γk(t)− γk(s)‖+ ‖γk(s)− γ(s)‖
< 1/3ε+ 1/3ε+ 1/3ε = ε .

Thus γ is indeed continuous and we find γ ∈ UK,x0

I,t0
as the limit of (γn)n. This

completes the proof.

Note that UK,x0

I,t0
is non-empty, as it contains the function that is constantly

equal to x0.
We now assume U is an open subset of R×Rn and F : U → Rn a continuous

function that is locally Lipschitz in x, as in the setting of Theorem 1. Given
(t0, x0) ∈ U , we know that there exists an open set V ⊆ U containing (t0, x0)
such that

‖F (t, x)− F (s, y)‖ ≤ C‖x− y‖ , (19)

for some C > 0 and all (t, x), (s, y) ∈ V . We may now pick a compact subset of V
containing (t0, x0), which is more specifically of the form [t0−δ, t0+δ]×B(x0, δ)
for some δ > 0. Here B(x0, δ) denotes the closed ball in Rn around x0:

B(x0, δ) := {v ∈ Rn | ‖v − x0‖ ≤ δ} . (20)

Note that Equation (19) then holds for all s, t ∈ [t0−δ, t0+δ] and x, y ∈ B(x0, δ).
As [t0 − δ, t0 + δ] × B(x0, δ) is compact and F continuous, a constant D > 0
exists such that

‖F (t, x)‖ < D (21)
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for all t ∈ [t0 − δ, t0 + δ] and x ∈ B(x0, δ). In this setting, we have the result of
Lemma 3 below. To make the notation somewhat lighter, we will denote by Iε
the open interval (t0 − ε, t0 + ε) ⊆ [t0 − δ, t0 + δ], for any 0 < ε ≤ δ.

Lemma 3. Let 0 < ε < δ, δD be given. There is a well-defined operator

L : UB(x0,δ),x0

Iε,t0
→ UB(x0,δ),x0

Iε,t0

given by (
L(γ)

)
(t) = x0 +

∫ t

t0

F (τ, γ(τ))dτ (22)

for all γ ∈ UB(x0,δ),x0

Iε,t0
.

Proof. As both γ and F are assumed continuous with the latter bounded, the
integral in Equation (22) is well-defined. It is clear that L(γ) : Iε → Rn is
a continuous function and that

(
L(γ)

)
(t0) = x0. It remains to show that(

L(γ)
)
(t) ∈ B(x0, δ) for all t ∈ Iε. To this end, we note that

‖
(
L(γ)

)
(t)− x0‖ =

∥∥∥∥∫ t

t0

F (τ, γ(τ))dτ

∥∥∥∥ ≤ ∣∣∣∣∫ t

t0

‖F (τ, γ(τ))‖dτ
∣∣∣∣ (23)

≤
∣∣∣∣∫ t

t0

Ddτ

∣∣∣∣ = D|t− t0| < Dε < δ .

Thus L indeed maps UB(x0,δ),x0

Iε,t0
into itself, which completes the proof.

Definition 3. We call the operator L of Lemma 3 the Picard operator.

The result we have been working towards is of course:

Lemma 4. Let 0 < ε < δ, δD ,
1
2C be given. Then the Picard operator is a

contraction on UB(x0,δ),x0

Iε,t0
.

Proof. Given γ1, γ2 ∈ UB(x0,δ),x0

Iε,t0
, a direct calculation shows that

‖
(
L(γ1)

)
(t)−

(
L(γ2)

)
(t)‖ =

∥∥∥∥∫ t

t0

F (τ, γ1(τ))− F (τ, γ2(τ))dτ

∥∥∥∥ (24)

≤
∣∣∣∣∫ t

t0

‖F (τ, γ1(τ))− F (τ, γ2(τ))‖dτ
∣∣∣∣

≤
∣∣∣∣∫ t

t0

C‖γ1(τ)− γ2(τ)‖dτ
∣∣∣∣

≤ |t− t0|C sup
τ∈Iε
‖γ1(τ)− γ2(τ)‖

< εCd(γ1, γ2) <
1

2
d(γ1, γ2) .
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Taking the supremum over t, we indeed arrive at

d(L(γ1),L(γ2)) ≤ 1

2
d(γ1, γ2) , (25)

which completes the proof.

As a corollary, we obtain

Corollary 1. Let F : U → Rn be a continuous function that is locally Lipschitz
in x. Let (t0, x0) ∈ U be given and δ > 0 be such that (t0, x0) ∈ [t0− δ, t0 + δ]×
B(x0, δ) ⊆ V ⊆ U as above. Then for ε > 0 small enough, there is precisely one

γ ∈ UB(x0,δ),x0

Iε,t0
that is differentiable and satisfies

d

dt
γ(t) = F (t, γ(t)) (26)

for all t ∈ Iε.

Proof. Suppose γ ∈ UB(x0,δ),x0

Iε,t0
is differentiable and satisfies Equation (26).

Integrating this identity from t0 to t ∈ Iε gives

γ(t)− γ(t0) = γ(t)− x0 =

∫ t

t0

F (τ, γ(τ))dτ , (27)

and so

γ(t) = x0 +

∫ t

t0

F (τ, γ(τ))dτ =
(
L(γ)

)
(t) . (28)

Conversely, if γ = L(γ) then

γ(t) = x0 +

∫ t

t0

F (τ, γ(τ))dτ . (29)

This implies that γ is differentiable, by the fundamental theorem of calculus.

Moreover, the derivative satisfies Equation (26). In conclusion, γ ∈ UB(x0,δ),x0

Iε,t0
is differentiable and satisfies Equation (26) if and only if it is a fixed point of

L. By Lemma 4, L is a contraction on UB(x0,δ),x0

Iε,t0
for small enough ε, so that

Lemma 1 indeed gives us a unique fixed point. This completes the proof.

We now have everything in place to prove the Picard-Lindelöf theorem, Theorem
1.

Proof of Theorem 1. Existence of a local solution γ follows directly from Corol-
lary 1. Since we have

d

dt
γ(t) = F (t, γ(t)) (30)

for all t ∈ Iε, it follows that γ is continuously differentiable.
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Now suppose we have two solutions γi : Ii → Rn, i ∈ {1, 2}, and suppose
γ1(s) = γ2(s) for some s ∈ I1 ∩ I2. We define the set

J := {t ∈ I1 ∩ I2 | γ1(t) = γ2(t)} . (31)

It is clear that J is a closed subset of the open interval I1 ∩ I2 and, since it
contains s, we see that J is non-empty. Now let t0 ∈ J be given and write
x0 = γ1(t0) = γ2(t0). By Corollary 1, there exist constants δ > 0 and ε1 such

that for all 0 < ε < ε1, the set UB(x0,δ),x0

Iε,t0
contains precisely one function γ that

is differientable and solves Equation (30) for t ∈ Iε. Here as before, we write
Iε := (t0 − ε, t0 + ε). Since γ1(t0) = γ2(t0) = x0, we may choose ε2 > 0 small
enough such that Iε2 ⊆ I1 ∩ I2 and γi(Iε2) ⊆ B(x0, δ) for i ∈ {1, 2}. Then if

we choose any 0 < ε < ε1, ε2, we see that γ1|Iε , γ2|Iε ∈ U
B(x0,δ),x0

Iε,t0
both solve

Equation (30) for t ∈ Iε, whereas UB(x0,δ),x0

Iε,t0
contains only one such solution.

We conclude that γ1|Iε = γ2|Iε and so Iε = (t0 − ε, t0 + ε) ⊆ J . This shows that
J is an open set. Thus J ⊆ I1 ∩ I2 is non-empty, open and closed, and so we
see that J = I1 ∩ I2. This completes the proof.
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