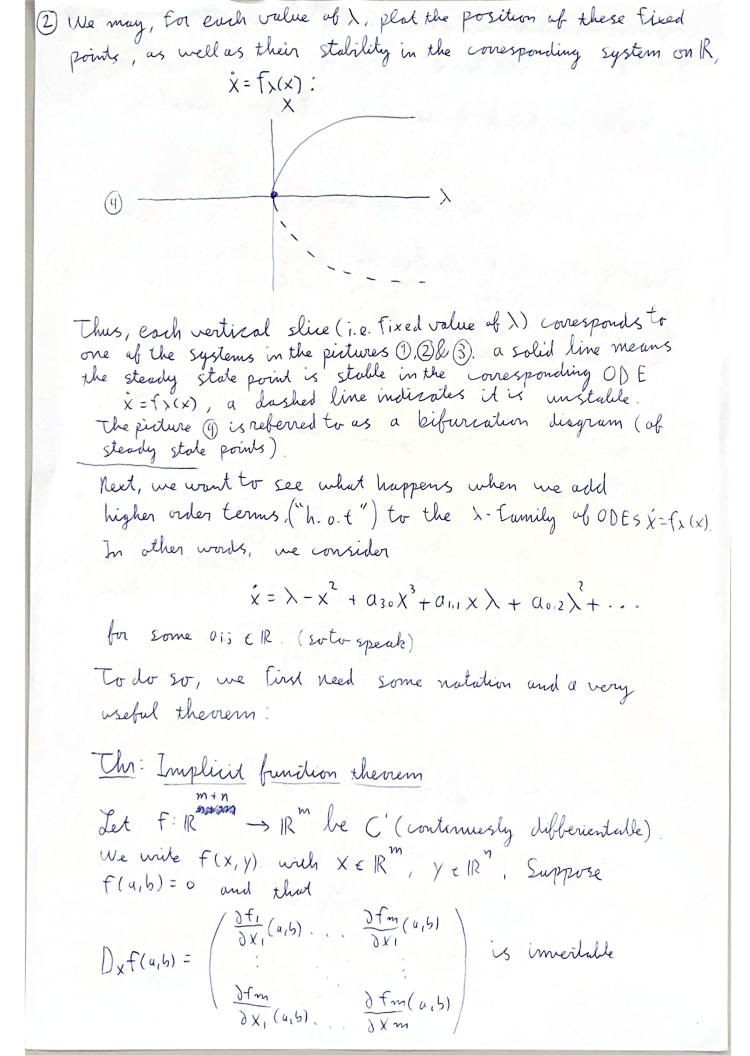
Ex1 Consider, for each tixed value of $\lambda \in \mathbb{R}$, the vectorfield f_{λ} on \mathbb{R} , defined by $f_{\lambda}(x) = \lambda - x^{2}$ $f_{\lambda}(x) = \lambda - x'$ For $\lambda < 0$, a sketch of the phase portrait is given by Though the exact tormulas for the solutions vary in \,, the overal behavior, that is, the qualitative behavior, remains the same, as long as we keep & (strictly) regative. Things look different for \=0: Los instance, where for ><0 every solution " shot abb "to - \infty, we now have a steady state point at X=0. Moreover, solutions that start at a positive value of X limit to this steady - state point, and will at course not passit Things are again different for >0. Now we have 2 steady- state points, found by salving fx(x)= >-x2=0 So $\chi^2 = \lambda \Rightarrow \chi = \pm \int \lambda$. The picture is now į= λ-×¹ (>>0) Note that Dxfx(x)=-2x, and So Dx (x(x) | x=-12 > 0 $D_{x}f_{\lambda}(x)|_{x=J\overline{\lambda}}=-2J\overline{\lambda}<0$ X=-5x is unstable, and X= 5x is stable



3) Then there exist open neighborhoods $U \subseteq \mathbb{R}^m$ s.c. $q \in U$, such that, assets, and a C'map g: V->U $\{(x,y)\in U\times V\mid f(x,y)=o\}$ { (x, y) & U x V | x = g(y) } u (b.a) c g Note that, since f(a,b)=0, we have q=g(b). • If fix C^k , by $k \in \{1,2,3,...\} \cup \{\infty\}$, then g can also be assumed Ck This theorem tollows directly from: The Inverse function theorem & Let F: R R be C' and let a c R be a point where DF(a) is invertable (as linear map from 12to 12) then there exist U,V = 1R open such that a old and F(U) = V and H: V -> U a C' map such that H(F(x))=x borall x & u and F(H(YI)= y borall y EV. Do Fla is a bigition from U to V with C'inverse H o It Fis (k, le € 1,2. }U { ∞}, then H may be assumed Ck us well The last part of the Inverse Eunction Theorem Follows readily

```
since F(H(Y))= y for all y ∈ V, we have, by the
(4) Because,
chain rule.
                     DF(H(V)). DH(V): Id. Ox, setting of the
                             So DH(Y)= (DF(H(Y)) = (I.DF. H)(y)
           where I: Gl(1;18) 5 is the Co map that sends a
               matrix to its inverse
  The Imerse Eunction Theorem is usually proven by Einding a contraction on a suitable function space.
   To obtain the Implicit Eunction Theorem From the Inverse Eunction
   Theorem, take f: 12 min -> 12 as in the Implicit bunction theorem
    and define F: IR -> IR as F(x,y) = (f(x,y), y)
                                                    ERMER IRM ERM
       Then DF(a,b) = \begin{pmatrix} D_x F(a,b) & D_x F(a,b) \\ 0 & Id|_{\mathbb{R}^n} \end{pmatrix}
          So F satisfies the conditions at the Innerse function Alevern 3/12" Let H be the local inverse, and write H(X,Y) = (H_1(X,Y), H_2(X,Y))
           Then F(H<sub>1</sub>(x, y), H<sub>2</sub>(x, y)) = (f(H<sub>1</sub>(x, y), H<sub>2</sub>(x, y)), H<sub>2</sub>(x, y)) = (X, y)
                  So Hz(x,y)= y & f(H,(x,y), y) = x
Now note that { (x,y) | f(x,y)=0} = { (x,y) | f(x,y)=(0,y)}
                                      = {H(O, V)}={H,(O, Y), Y)}
                   Set y(y) := H(O, y) and we are done.
   Next, we will aften use big O"notation. Let a & R and
         f, g: 12 -> 12 two functions. We write fix O(gir) as x -> a
         If there exist C, 8>0 such that
               |f(x)| ≤ C|g(x)| bor all x s.c. 0< |x-a| < 8
      Most ob the time, g(x) will be something like g(x)= | x3 |
               or y(x) = |x^3| + |x|| |x| + |x||
```

Evaluations, Suppose $f(x,y) = x^2 f_1(x,y) + y^2 f_2(x,y)$ but some continues bunctions $f_1, f_2: ||Z^2| \rightarrow ||Z|$. Suppose $|f_1|$ and $|f_2|$ are bounded by |X| > 0 in Some neighbourhood |X| = |X| + |Y| + |Y|

So $f(x,y) = O(|x^2|+|y^2|)$ us $x \to 0$. Be careful with the "1.1". En instance x-y=O(|x|+|y|) us $x\to 0$ as |x-y| = |x|+|y|, But $x-y \neq O(x+y)$, Because for $(x,y)=(\xi-\xi)$, us $x\to 0$

| X - Y | = 2 | E | \$\frac{1}{2} \C. | X + Y | = 0 in any neighborhood at (0,0)

Recall Taylor's theorem:

If $f: \mathbb{R}^n \to \mathbb{R}$ is (k+1), $k \ge 1$, then for $a \in \mathbb{R}^n$, $f(x) = \sum_{|\alpha| \le k} \frac{1}{\alpha!} (x-a)^{\alpha} + \sum_{|\beta| \ge k+1} R_{\beta}(x) (x-a)^{\beta}$

where $\alpha = (\alpha_1, -\alpha_m)$, $\beta = (\beta_1, -\beta_m)$ are multirely, and every RB is continues (so locally bounded)

So then $f(x) = \sum_{|\alpha| \in k} \frac{\int_{\alpha}^{\alpha} f(\alpha)}{\alpha!} (x-\alpha)^{\alpha} + O(\sum_{|\alpha| = k+1}^{\alpha} 1) \text{ as } x \to \alpha.$

Typically, we will want to write f(x) = O(g(x)) as $x \to 0$ So if we just wite f(x) = O(g(x)), we typically mean as $x \to 0$

Let us now study bifurcations in systems of the form $\dot{X} = \lambda - \chi^2 + O(|\chi^3| + |\chi|| |\chi| + |\chi|^2) = f(\chi_1 \chi_2)$

(say the bull system is co, bu simplifieds)

6) note that f: IR2 -> IR satisfies Dxf(0,0) = 7. Thus by the Implicit function, there is a (locally debined) map &: R-> R Satisfying \(\(\omega \) = 0 and such that all solutions to f(y, x)=0 are given by (x, x(x1). This means the bifurcation diagram may look like e.g. ((gnoring stability), all we know is that the > - comports are a function of the X- components, at the steady- state points. Nate that the 2nd and 3rd option would constitute "real bifurcations", as the number at zerves changes as Now, the derivative in the X-direction of our barnily of vertubields is given by $D_{x}f(x_{i}\lambda) = -2X + O(|X|^{2} + |\lambda|)$. We see that $D_{x}f(0,0) = 0$ and, since $D_{xx}f(X_1\lambda) = -2 + O(|X|)$, we conclude again by the Implicit bunction theorem that, locally, $\{(X,X)| D_{\mathbf{x}}f(\mathbf{x},X)=0\} = \{(\widehat{\mathbf{x}}(X),X)\}$ for some map $\widehat{\mathbf{x}}$ passing through 0. Since Dxxf(x(x),x)=-2+O(1)1), we have Dxx F(X(X)) = O((X1), Sor locally |Dxxf(x(x),x)+2| = C(x) busone C>0. This means Dxxf is reguline along the curve (X(X), X) around (0,0). Thus we have that (X(X), X) is a burnily of maximums of each f(X,X). by I fixed: X > < denotes steady states F(Xo,X) X maximums, (Dxfvanisher)

 \mathcal{F} Finally, consider f along there maximums $\widetilde{\chi}(\lambda)$. Since $\tilde{\chi}(\lambda) = O(1\lambda 1)$. and $f(\tilde{\chi}_1 \lambda) = \lambda - \chi^2 + O(|\chi|^3 + |y||\lambda| + |\lambda^2|)$, we have $f(\tilde{\chi}(\lambda),\lambda) < 0$ So for > <0, f(x(x),x)= > LO(1/11). $f(\hat{x}(\lambda),\lambda)>0$ bu >>0 So bu 200, the maximum of f(X, >) when varying X is negative, so we cannot have my reroes (locally) bor \co. Thus the pidure must be > denates) steady state points local. X a maximum ab f(x, 1) bu fixed) 11 F(X,0) Note that we may also deduce stability from this. Thus, ab Mx = \-x and qualitavely, the siburcation diagrams x= x-x2+0(1x13+1x11x1+1x12) are the same. The name but his common steady-state biburcation is the Saddle- node biburcation This is what the vertir bield x = x-x2+0(1X13+1X11) means," S O(IXI3) a o o + a 10 X + a 20 X + a 30 X + ... by the way f(Xxx)= + aoix + aixx + a22x2x + a32x3x+... O(IXIIXI) + aoz x + a12xx + azzx2x + a32x3 x2+. + a 0 3 2 + a 13 x 2 + , so f(0,0)=0 Su a 00 = 0 a10 = 0 Su Dxf(0,0)=0 a20 =-7

1) It seems a lit excessive that we need 4 conditions for this to hald, but as it turns out this situation is "generic", as we now Eist, note that, it f(Xo, lo) = 0 for some Xo, lo ell, then we may define $f(X, \lambda)$: $f(X+Y_0, \lambda+\lambda_0)$, so that $\hat{f}(0, 0)=0$. Thus, after a quide coordinate transformation, we may assume that the steady - state point that we want to investigate, in terms at Continuation, is at X=0 by X=0. This abcourse works for vectorfields on R" in d-paramaters as well. One word at advise, young from f to f as above may not preserve all the properties that f has, such as symmetry or a network-structure, at least some care is needed. This explains why in our situation, we may assume and (i.e. f(0,0)=0)

as bor aro, it aro to, then by the Implicit Fundion Theorem, the set of steady state points is locally a graph So there is not really a over >

biburcation to speak ub

(ab steady state points)

This is why we assume an=0.

More generally, we have:

The I Let F: IR" x IR" -> IR" be a d-paramater bandy ab verterbields on IR", which is C' (seen as a map from IR" -> (12") Suppose F(0,0) = 0, and that X=0 is a hyperbolic steady state point at fo:= F(0,0): 12"->12". Then there exist open neighborhoods USIR", V SIRd with 0 € U, 0 € V and a C'map g: V -> U such that

- 1) The Steady- state points at F are praisely given by {(x, X) & UxV | x = g(x)}
- all the steady state points in UxV are hyperbolic for their respective systems FX:= F(0, X) on IR. i.e. each matrix Dx F(g(y);)) is hyperbolic

The same statement holds true it we replace "hyperbolic" in the theorem above with "invertable", in both instances

Recall that a matrix is hyperbolic is it has no eigenvalues on the imagenary axis, and inveitable is it has no o-eigenvalues. The 1 essentially tells us that hyperbolic steady - states persist. The bollowing Lemma will be extremely useful:

Lem 2 Let A: Rd -> Mut (n, C) be a continues burnily at complex nxn matrices. Then the eigenvalues are continues in the ballowing way: Given Matrices of Apro), given an E>0.

There is a S>0 such that It || p-po|| < 5 then the eigenvalues of Aprolomer balls.

(not necessarily distinct) eigenvalues at Apo

In fact (riven plo, given & and given \) an eigenvalues at A plo

E mate angle

with algebraic multiplicity ke, there is a \$> 0 such

puch that

Big(X)

multiplicities at the eigenvalues at A plant lie in Be(X)

multiplicities at the eigenvalues at A plant lie in Be(X)

multiplicities at the eigenvalues at A plant lie in Be(X)

multiplicities at the eigenvalues at A plant lie in Be(X)

pl.

(0) Proof of Lemma 2: Denote by $P(X_{r}, x) = X^{m} + \alpha(\mu) X^{m-1} + \alpha_{m-2}(\mu) X^{m-2} + \cdots + \alpha(\mu) X + \alpha_{0}(\mu)$ $= \det(X_{l}, x_{l}) + \cot(X_{l}, x_{l})$

Suppose μ ., $\xi > 0$ and χ an eigenvalue at $A \mu_0$ are given.

Denute by $q(x,\mu) = \frac{\partial P}{\partial x}(x,\mu)$, which is not the O-polynomial Result Streets which that the only zero at $p(x,\mu)$ that is contained in B

1 (P(Z, Mo) d Z = # zernes at Ppo in B ()),

counted wills multiplied

= k

where Chemates a circle ab radius & integraled counter-

Then (has on it no zeroes at p(Z, Ho), So (since the circle is compact) there exists no a S,>0 such that p(Z, µ) does not vanish on (ib 11 µ-µ011 < S1.

So the map $\Psi: B_{S_i}(\mu_0) = (e^d \longrightarrow \mathbb{C}$ $\mu \longmapsto \frac{1}{2\pi i} S_C \frac{4(2,\mu)}{P(2,\mu)} dz \text{ is well-defined}$

It is also continues now choose 5, >5>0 Ends that, it

11 11-11011 = 5 then 114(11)-1211 < 2.

Since 4 takes on integer values, necessarily

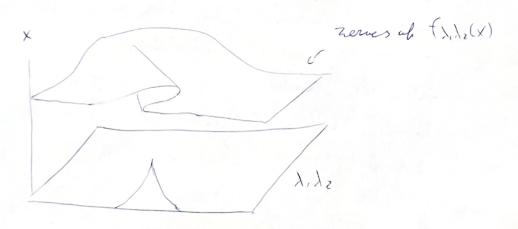
U(H) = 1/2 ((2.14) dz = # zeroes of Pa in BE(L) counted with multiplicy"

= k

This proves the Second part of the Lemin, The first bollows immediately from that

(1) Note that The I Now bollows immediately from Lemma I and the Implicit Tunten theorem To further drive home that we are not interested in hyperbalic fixed points when doing biburcation analysis (at least local Siburation analysis), recall that The Hartman-Crabman: Let F: R" -> R" be a C' vectorbely and p a hyperbolic fixed point of the flow of F, so F(p)=0 and $DF(p) \in Mad(n; \mathbb{R})$ is hyperbolic. Then there exist open neiborhoods P ∈ U ≤ 112, O ∈ V ≤ 112° and a homeomaphism fl: U-> V which conjugates the restriction of X=F(X) on (1 to short ah y = DF(P) y on V. (Thatis, if fe(x) denutes the blow of x=f(x) and Yely) that of y= Df(p)y. Then Yelx) is defined iff Ye(H(x)) is defined, and then HI (x(x)= 4x(f(x))) So bar we have only considered I parameter biburcations, but others exist us well, of course, courider e.g. x=fx, lz(x)= x3-x, x+hz, x, h, le R Note that, but fixed \,\lambda,\lambda,\,\text{\formula}, \formula \lambda,\lambda,\,\formula,\formul

The transition between states () and (3) is (2), where we have a double zero. There: $f_{\lambda,\lambda}(x) = x^3 - \lambda_1 \times 1 \lambda_2 = 0$ and $\frac{\partial ef_{\lambda,\lambda}(x)}{\partial x} = 3x^2 - \lambda_1 = 0$

So $\lambda_1 = 3x^2$, from # A. Then from # $0 = x^3 - \lambda_1 x + \lambda_2 = x^3 - 3x^2 \cdot x + \lambda_2$ $= x^3 - 3x^3 + \lambda_2 = -2x^3 + \lambda_2$ So $\lambda_2 = 2x^3$ 

Finally, I want to show a biburcation where the number of steady - state points does not change at all (though the dynamical behavior does change, significantly!).

Consider the system on \mathbb{R}^2 , parametrised by $X \in \mathbb{R}$;

is a fixed constant (not a variable, nor a liburcation parameter).

Note that the eigenvalues at province parameter D.F. (0,0) = (2 - w) are given by \times is it is the isolated thus. D. F. (0,0) is always invertible; the isolated steady state point at (0,0) persists. It is in but the only steady state point of the system, for all values of \times R.

(13) However, at \=0, the system lovies hyperbolicity, In buck, as \ moves from negative to positive, the eigenvalues more as To see what happens, we wive) hill w the system as one on C: by setting Z=X+iY. we get Z= (x+iw) 2 - 1212 This already shows one peculiarity in the System Suppose Z(+) is a Solution, and consider the (une ev(+)= eix z(t), for some x x |R. Then is(4)= eix 2(4)= eix(/+im)2(4) - eix[2]2(4) = () + i w) e i ~ z(4) - z(4). z(4) - e i ~ z(4) = (\(\lambda\) ei \(^2\) (\(\lambda\) (\(\varepsilon\) \(\varepsilon\) (\(\varepsilon\) \(\varepsilon\) \(\varepsilon\) (\(\varepsilon\) \(\varepsilon\) \(\va Thus ex(+):= ei~z(+) satisfies @ whenver. 2(+) does. The barnily of linear maps { eix | x \in IR} "represents the Lie Croup S' (More on this later), and we say that the Equation (i) has a symmetry: There are linear maps Sending Solutions to Solutions ·e' (6) Let us now write a solution of (in polar-coordinates: Z(+)= r(+) e

Z(+)= r(+) e

Z(+)=0 is always a Salution, so it we choose any other salution, this is 6k.

1) Dibbenentator, we get = reid + idreid Er ZZ= reiveie + i dve rei

 $\dot{v} = \mathcal{R}\left(\frac{\bar{z}\dot{z}}{v}\right)$, $\dot{\Theta} = \operatorname{Im}\left(\frac{\bar{z}\dot{z}}{||z||^2}\right)$ = \frac{1}{v^2 \text{Im}(\bar{2}\bar{2})}

= rr +i Ov

Now === (iw+x) == + - 12122 = (iw+x) 11212 - 1214 $=(i\omega+\lambda)v^2-v^4$

Thus $\dot{r} = \dot{r} \operatorname{Re} ((i w + \lambda) v^2 - v'') = \frac{1}{v} (\lambda v^2 - v'')$ $= \langle v - v \rangle$

and $\Theta = \frac{1}{v^2} \operatorname{Im} \left((i \omega + \lambda) v^2 - v^9 \right) = \frac{1}{v^2} \omega v^2 = \omega$

So always G=w => O=w++00 and i= \v-v3

Note that \v-v3=0 gives v=0 and v=±51, ib \20:

XV-Y' X50

×v-v3 , ×>0.

So bor >>0, we get the solutions

which are periodic (it's one periodic solution, with

(5) We get the barrows Hopb - Biburcation bor X <0, we have a stable Steady state point, as >0, it looses stability, but a stable periodee orbit emerges again, the biburcation persists when higher order terms are added. · Other Eamous befurealing to keep an eye on. · Pitchfork Transcritisal, i.e.

10 Part 2: Reduction Techniques

We now describe so-called "(complexity) reduction techniques" Most natably dimension reduction techniques. We start with Lyapunov-Schmidt reduction. To illustrate it, consider the I- paramater barnily at ODEs on 1122 given by

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -x + y + 3\lambda + xy \\ \lambda - xy \end{pmatrix} = i + \int_{X} (x, y)$$

Note that $f_0(0,0) = 0$ and $Df_0(0,0) = \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}$, the latter of which is not hyperbolic, so we may not assume this stendy state point persists. To solve $f_{\lambda}(x,y) = 0$ near $\lambda = 0$, x = y = 0. We need to solve $f'_{\lambda}(x,y) = \lambda + y + 3\lambda + xy = 0$ (i) & $f'_{\lambda}(x,y) = \lambda - xy = 0$ (i) & $f'_{\lambda}(x,y) = \lambda - xy = 0$ (i) &

From the Implicit Eunction Theorem, as $D_X F_X'(0,0) = -1 + y|_{y=0} = -1$ We see that () is locally salved by X = X(X,Y)We write $X(Y,X) = aY + bX + O(|Y|^2 + |Y||X| + |X|^2)$, then plugging

who () we get $-x(y,\lambda)+y+3\lambda+x(y,\lambda)y=0$ $-ay +b\lambda+y+3\lambda+O(|y|^2+|y||\lambda|+|\lambda|^2)=0$

= 5 a= (, b= 3, so

x(y,x)= y+3x+ O((yi+1y11x1+1x12))

Now we plug this equation bor $\times(\gamma, \lambda)$ into (2), to altain

 $\lambda - x(y\lambda) y = 0 = 5$ $\lambda - y^2 - 3 \lambda y + O(|y|^3 + |y|^3 \lambda | + |y|| \lambda |^2) = 0$ $\Rightarrow \lambda - y^2 + O(|y|^3 + |\lambda||y|) = 0 y$

So the steady states lows like (with the equations for X determined)

(7) So what did we do here? This is an instance of so-called Lyapanor-Schmidt Reduction. Suppose we have a banily ab vertrifields(co)F: IR" x IRd -> IR" s.t. F(0;0)=0. to solve by F(x; X) = 0 locally around (x; X)=(0,0), let us write A := DxF(0;0) We choose a vectorspace $U \subseteq \mathbb{R}^m$ complementary to ker(A) and a vectorspace $V \subseteq \mathbb{R}^m$ complementary to Im(A). Thus IR = U D ker (A) = V D Im(A), Denute by Pv: R" -> V the projection onto V along Im (A). So Idv-Pv 12"-> Im(A) is the projection onto Im (A) along V Then F(x; X)=0 is equivalent to $(IJv-Pv) f(x;\lambda) = (IJv-Pv) f(u+y;\lambda) = 0 0$ $Pv f(x;\lambda) = Pv f(u+y;\lambda) = 0 0$ where we write x = a + y with $a \in U$, $y \in ker(A)$.

We first focus on Equation (1): Define $G: U \times ker(A) \times \mathbb{R}^d - \sum Im(A)$ by 6(u, y; X) = (I) u-Pv)(F(a+y; X) given p∈ U, we have DuG(0,0;0)p= delt=0G(+p,0;0) = delt=0 (Idv-Pv) F(tpio) = (Idv-Pv) Dx F(0;0) p = (LAV-PV) Ap = Ap. where in the last step we use that Ap & Im(A), so (Idv-PVIAP=AP Now, it DuG(0,0;0) p=0 then Ap=0 sor p e her A, but p e U and R=u & her (A) sor p=0. Thus DuG(0,0;0) is injecture. By runk-nullily dim(A) + dim(Tm(A)) = dim(12") = N (As 0-> her(A) -> 1 > 12 -> 2 m(A) -> 0 is exact) Also din(a) + dim(her(A1) = n So dim(2m(A1) = dim(a), Thus DaG(0,0,0): U -> Im(1) is lijetive. So by the Implicit Function theory: (Dis salved locally by (u(y; X), y; X) Now deline H: her(A) x 12d -> V by (3: H(yix) =0 $H(y;\lambda) = Pv F(u(y;\lambda)+y;\lambda)$ Then solutions to 3 are the sume as solutions to 2, given () is solisbed.

18) Nate as well that dim(V) = n-dim(Im(A)) = dim(ker(A1). So the only place we have to get "our hands dirly" is at solving H(YiX)=0 by ye kn(A). Example Consider the ODE: $X_1 = -X_1 + Sin(X_1) y^2$ $X_2 = -1 \times 2 + 2 sin(X_2) y^2$ x3= - x3 + 3 sin (x3) y2 = fx(X1... X100, Y) X100 = - X100 + 100 sin (X100) y2 y =- > + y + x3+ x3+ + + x100 with X1, X2. X100, Y, X & IR. What is the structure of the herves veus (0,0...0,0) c 12 102 ? By the Implicit Eunition Theorem X; = X; (Y;) = O(14/1/1) Then to salue by the y- variable: Thus we have to Ealne 1- y2- O(1/13+1/11/11+1/12) =0 So agin we get X ... X (40) Y" locally The Lyapunor - Schmidt Reduction technique is more ab a "big deal" then you might thinks: as we have: Therem (inbornally): Let U = 12 d open, bounded; and Let C(U;n) denute all smouth maps l-u-s Wut(R;n) Then by "generic choice" of $l \in C(Uin)$, we have dim (her l(x)) & d broall x & U

(3) Thus, in particular, along a 2-parameter bifurcation (so d=1) we have generically that dim(ben(A))=1. So then the reduced equation H(y;)) just becomes a problem on IR (with 2-parameter) (even if n=10²!) More on this later Later, I also want to show Lyapunov-Schmidt Reduction on Banach spaces.

Note that one problem with Lyapunov-Schmidt reduction is that we do not (easily) yet information on Stability. This is Different with our next technique:

Center Manifold Reduction

To mativate it, we need the ballowing result & definition:

Let A ∈ Mat(IRin) be a given real n×n matrix, and denote by A1, A2... Al ⊆ IR a partition of IR into I parts.

So A: n-1:5= & if i≠i (i; ∈ {1...l}) and IR= A1 UA2U UAl

Then there exist unique linear subspaces U1, U2. Ul ⊆ IRⁿ

s.t.

- 1) Allie Ui brall i e {1,.., l}
- 2) A|u; · U; -> U; has only (generalised) eigenvalues with real parts in 1; bor all i \{1..., l}
- 3) Ui o Uz o . OUl=12°

Proof This follows directly from real Jordan- Normal form.

Note that, it is an eigenvalue of A with Re(X) & A;

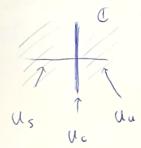
then X is an eigenvalue, satisfying likewise

Re(X) & A;

(as Re(X) = Re(X))

Debinition Two cases are important to as:

Case 1) $\Lambda_i = \{ x \in \mathbb{R} \mid x < o \}, \Lambda_z = \{ o \}, \Lambda_z = \{ x < |\mathbb{R}| x > o \} \}$ Then U_i is called the stable subspace ab A_i , we write $U_i = U_s$ U_i is called the center subspace ab A_i , we write $U_i = U_s$ U_i is called the unstable subspace ab A_i we wite $U_i = U_s$ U_i is called the unstable subspace ab A_i we wite $U_i = U_s$ Care 2) A = {x & (R | x \neq 0), A = {0} then U, is the hyperbolice subspace of A, U,=Uh Uz is the center Subspace at A, Uz=Uc (as before). Note that Uh=Us & Uu, and so 12 = Uh & Uc= Us & Uu & Uc // 50 (Of course, U.is



XXXXXX

+ + + × +

R B+

the same in bath debinitions)

We note the ballowing; dynamics on Un go to infinity as t-s 00 while those for Us to go inbinity as (>- 00. That is, dynamics of the System X = Ax, so etAx. bor x. Ella, Us respectively. So the bounded solutions, it present, have to lie on U.c. Of course these are not too interesting bor linear systems, but we can have buriles at steady state points or periodic valits, and these haveto be on U.c. We explore dynamics of X = AX some more in the fallowing:

Prop 1: Denote by To & The Id-To the projections along IR = Uh Ole onto de and Uh, resp.

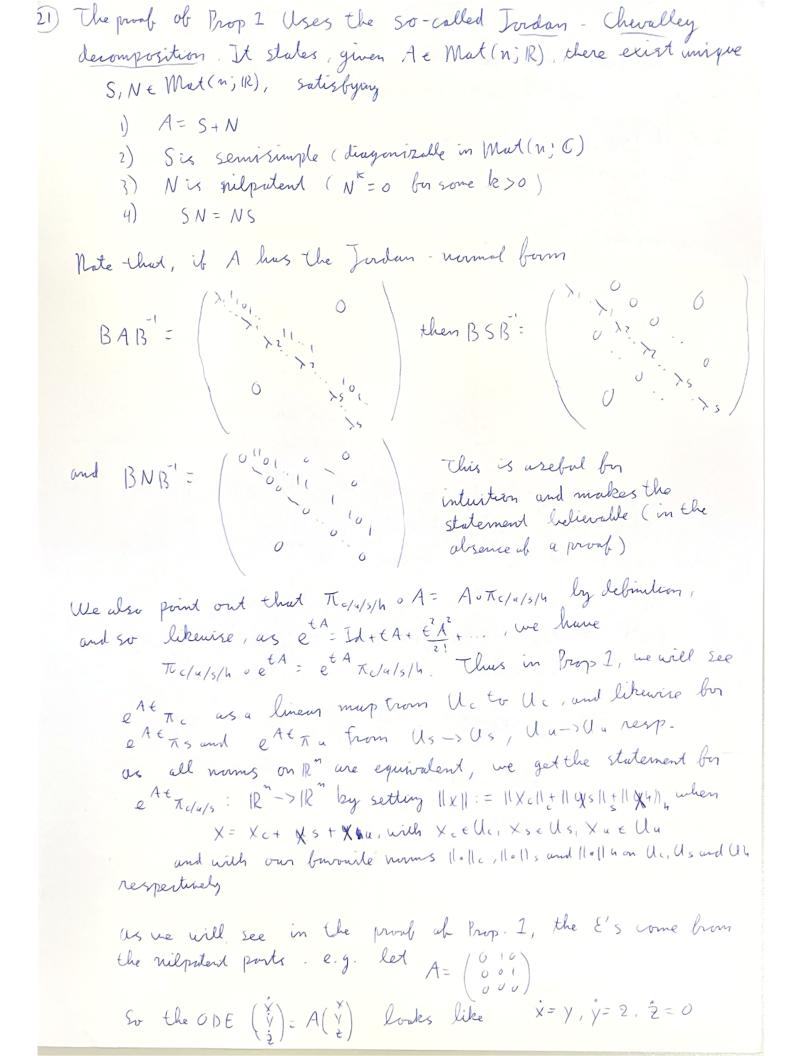
Similarly, define TCITU, TS W.V. t. IR = Uc & U a & Us

Set B4:= min {Re(1) | x eigenvalue at A and x>0}
B-:= mox {Re(1) | x" at A and x<0}

Then given E>0, there exists M(E)>0 s.t.

11 e AtTICI = MCE) e EIEI YteR 1 e A+ T(u|| 5 M(E) e ()3+-E) + Y + 50 11 e At TS 11 = M(E) e(B-+E) + V + 20

This the Uc part may still grow, but less than any responential. The stable part will decrease and do better then "the highest eisenable plus a lit"



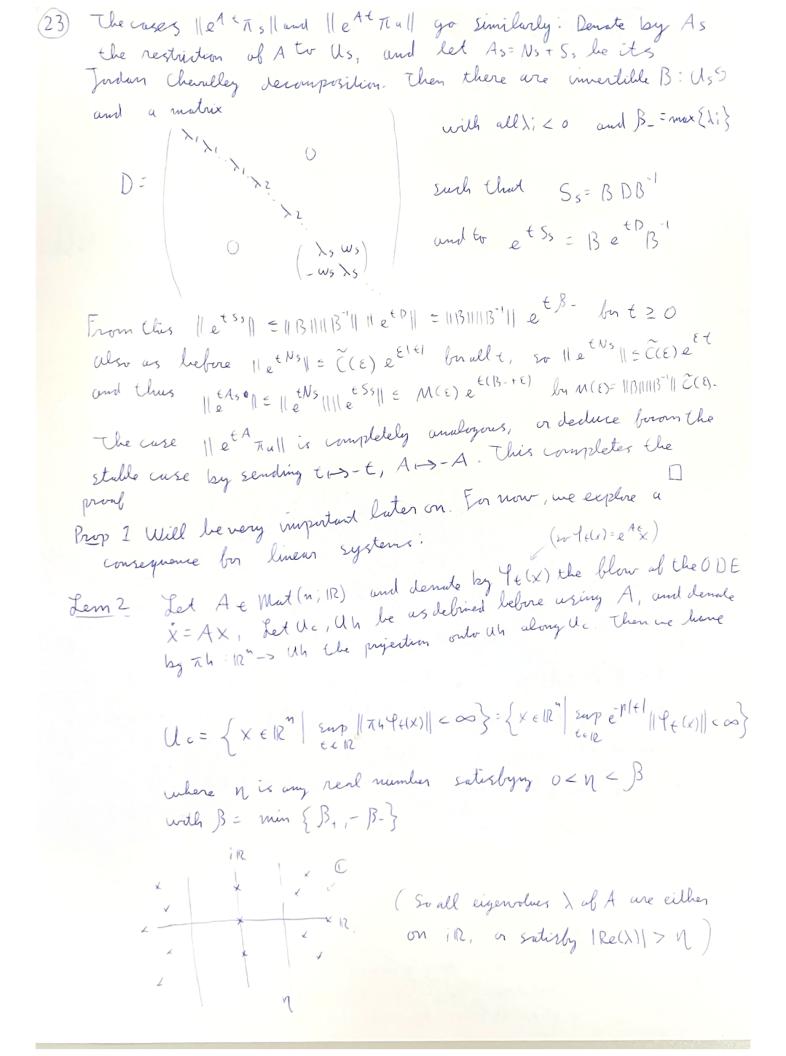
```
(22) Str Z(4)= Zo, y(4)= Zot + yo, x(4)= Zot + yot + Xo
           This can have expressed growth, e.g. as it x, yo, 20>0.
          But it is polynomial, nut exponential.
    Proof up Prop ? We tix E>0 and wide Ac: = TcATc: Uc S
          then we may see et Azc as a map from Ucto Uc which is
         given by etAc. Wile Ac= Sc + Nc in Jurdon Chevalley
      Decomposition - as Sc. N. = Nco Sc, we have
                        etA: = etN: tS: , sr || etA: || = || etN: || . || etS: ||.
         as Scir semisimple with all eigenvalues on iR, So
                  Sc ~ (000 0 ) we have ||e^{tAc}|| \le C by some C > 0

When precise, if D is diagonal (012x2)

block diagonal) then ||D|| \le 1 and we
              may write Ac= BDB', sor e tAc = e BOB' = Be + B', so
              (letAc) = (B) (B) (letO) = (B) (B) (B) = :C
      Now we look at et No. assume Not o by kezo. Then
                 e^{\pm Nc}: Id + \pm Nc + \frac{\epsilon^2}{2!}N_c^2 + \cdots + \frac{\epsilon^K}{\kappa!}N_c^k So
               \|e^{tNc}\| \le \|Ia\| + \|e\|\|Nc\| + \frac{\|e\|^2}{2!}\|Nc\|^2 + \frac{\|e\|^2}{k!}\|Nc\|^2
= 1 + \|e\|\|Nc\| + \frac{\|e\|^2}{2!}\|Nc\|^2 + \frac{\|e\|^2}{k!}\|Nc\|^2
                                                                           + Itik IINclik
                            \mathcal{E} = 1 + |\mathcal{E}t| \left( \frac{||Nc||}{\mathcal{E}} \right) + \frac{|\mathcal{E}t|^2}{2!} \frac{||Nc||^2}{5^2} + \dots + \frac{|\mathcal{E}t|^K}{K!} \frac{||Nc||^K}{\mathcal{E}^K}
                            \leq \widetilde{C}(\varepsilon) \left( 1 + |\varepsilon t|^{2} + \dots + \frac{|\varepsilon t|^{\kappa}}{|\kappa|} \right)
        where \tilde{C}(\xi) = \max\left(1, \frac{\|N_{c}\|}{\xi}, \frac{\|N_{c}\|^{2}}{\xi^{2}}, \dots, \frac{\|N_{c}\|^{k}}{\xi^{k}}\right) > 0
          So \|e^{tNc}\| \leq \widetilde{C}(\mathcal{E})(1+|\mathcal{E}t|+\dots+\frac{|\mathcal{E}t|^k}{|\mathcal{E}t|^2})

\leq \widetilde{C}(\mathcal{E})(1+|\mathcal{E}t|+\frac{|\mathcal{E}t|^2}{2!}+\dots+\frac{|\mathcal{E}t|^k}{|\mathcal{E}t|}+\frac{|\mathcal{E}t|^k}{|\mathcal{E}t|}+\dots)

=\widetilde{C}(\mathcal{E})e^{|\mathcal{E}t|}=\widetilde{C}(\mathcal{E})e^{|\mathcal{E}t|}
         Thus putting things Eogether: || etac| = || e Nc ||. || e Sc||
                                                                            = C, C(E) e Elti 1, M(E) = (. T(E)
```



```
(24) Prout of Jemms 2 WX & Uc then f(x)= etAX & Uc for all t & IR,
                                                          Now suppose X∈1R is such that sup 1/74 fe(x)|| <∞, suy sup 1/7/4 fe(x)|| €e1R - C
        then we may write X=Xc+X4 bor Xh=Th(X) & Uh, XceUc.
        We get || \( \( \( \( \) \) || = || e \( \) (\( \) (\( \) \) || = || e \( \) \( \) \( \) || = || e \( \) \( \) \( \) || = || e \( \) \( \) \( \) || = || e \( \) \( \) \( \) || = || e \( \) \( \) \( \) \( \) || = || e \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \)
                           = ||e+Axc|| + || ** e+A THX|| = ||e+Axc|| + ||TH e+Ax|| = ||e+Axc|| + ||Thefe(x)||

\( M(n) e^{n|t|} + C by le Prop 1.

                            < M(N) entel + Centel (us entel = 1 brall + (1)
                So enle | le(x) | = M(p)+C thus sup enle | |le(x) | < 00
     Now suppose X \in \mathbb{R}^m satisfies Sup e^{-N|t|} ||te(x)|| < \infty, so e \in \mathbb{R} |||te(x)|| \le (e^{N|t|} ||te(x)|| \le 0; (ley Prop 2)
                     = M(E) e (B+-E) + | (P-E(X))|
                                                                                          \leq M(\xi) e^{(\beta_{+}-\xi)} + C - e^{||f|-t||}

= M(\xi) \cdot C - e^{(\beta_{+}-\xi)} + -\eta + (as t \leq 0, t)

= M(\xi) \cdot C - e^{(\beta_{+}-\xi)} + -\eta + (as t \leq 0, t)

= M(\xi) \cdot C - e^{(\beta_{+}-\eta-\xi)} + (as t \leq 0, t)
                         br any E>0. ->
                 So choose & ruch that
                     E < B-N = B+-n So (B+-n-E) >0
                     Thus ITAX I = M(E). C. e (B+-N-E)+ brall t=0. Solet (->-0
                      and we get 11 Tux 1 =0 => Tux = 0.
                Similarly, by t =0 and E<-B-- A . So B-+N+E <0:
                                       11 T SXII = M(E)e (B-+ P)+ (e) = M(E) C e (B-+ P)+(E)-(
                                                              us ( > 00 : ||Tsx|| =0 => Tsx=0
                                             Su X = X C + TuX + TsX = Xc + UT U = Xc E Uc
                                         This completes the proof | Note that Lem 2
                                                 Confirme our preirous statement that all bounded
                                                  solutions lie on U_c, as \ell_{\epsilon}(x) bounded
    -n ≥ B-
                                           6 B-+N €0
```

25) We may now finally State our main result. It says that by systems "sufficiently lose to linear" (but still with molinear terms) we have an invariand manifold closely mirroring the space U. and its properties as laid out in Lemma 2: This [Center Manifold Reduction] Given $A \in Mud(m, \mathbb{R})$, denote by We and Wh its center and hyperbolic subspaces (named Uch Uh hebre). Let k > 1 be given. There exists E=E(A, k) > 0 such that il a non-linearity G: IR" > IR Satisfies G(0)=0, DG(0)=0 1) Sup 11 D'G(x) 11 < 00 by o = j = k 2) Sup 11/36(x)11 < 8 Then the System x = Ax + G(x) has the following property: There exists a function 4: We -> What class Ck s.t. its Bear graph { Xc+4(Xc) Xc+Wc} is flow-invariant. Immemeris bounded and satisfies $\psi(0)=0$ and $\psi(0)=0$. We usually reber to thus blow invariant set as the Center Manibald of the system: Mc= { Vc+ 4(Vc) | XceWc} We moreover have Mc= { X ∈ R": Sup || πh fe(x) || < ∞} where $Y_{\xi}(x)$ denotes the blow ab the system x = Ax + G(x) and $\pi h: (\mathbb{R}^n -)$ Whe is the projection w.v.t $(\mathbb{R}^n -)$ When the projection w.v.t $(\mathbb{R}^n -)$ When the projection w.v.t $(\mathbb{R}^n -)$ when $(\mathbb{R}^n -)$ when $(\mathbb{R}^n -)$ where $(\mathbb{R}^n -)$ whenever $(\mathbb{R}^n -)$ where $(\mathbb{R}^n -)$ whenever $(\mathbb{R}^n -)$ where $(\mathbb{R}^n -)$ whenever $(\mathbb{R}^n -)$ where $(\mathbb{R}^n -)$ wh 00 Mc= { x e IR": Sup le MIEI || PELX) || c 00 } Finally: if Ø: We->wh is continues, bounded with B defined by A and such that the set {xx+p(xc) | xc+ Wc} is flow-immunish, then \$ = 4 Note that, if G=0 (so it the ODE is X=AX, Er lineir) then () & 2) are satisfied and Y=0, So M = WC by uniqueness and we retrieve Lemma Z

26) In general, the pidure is:

Wh

Wh

WC

Note that the set: $\{x \in \mathbb{R}^m \mid \sup \| \pi_h f_{\epsilon}(x) \| < \infty \}$ is flow-imarial by construction, for, if $\|\pi_h f_{\epsilon}(x)\| < C$ by some C > 0 and all $f \in \mathbb{R}$, then given $f_0 \in \mathbb{R}$, $\|\pi_h f_{\epsilon}(f_{\epsilon_0}(x))\| = \|\pi_h f_{\epsilon_0}(x)\| < C$ by all $f \in \mathbb{R}$. Note as well that, since G is assumed bounded, saluting to $f_0 = f_0(x)$ and $f_0 = f_0(x)$ and $f_0 = f_0(x)$ and $f_0 = f_0(x)$.

If $f_{\epsilon}(x)$ is a bounded solution, say $||f_{\epsilon}(x)|| < D$ bor some D > 0 and all $t \in \mathbb{R}$, then clearly $||\pi_h f_{\epsilon}(x)|| = ||\pi_h || ||f_{\epsilon}(x)|| = ||\pi_h || || C \propto 0$ so M_c contains all bounded solutions. However, M_c can (and will obten) contain unbounded solutions too. Consider for instance the linear system $\dot{x} = Ax$ (so $G \equiv 0$, so $M_c \equiv W_c$) where $A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, and so $M_c \equiv \mathbb{R}^2$, we already say that $\dot{x} = Ax$ ($\dot{x} = Ax$))

Some more remarks on the theorem: the system $\dot{x} = F(x) := Ax + G(x) \text{ has a steady state point in 0:} \\ F(0) = G(0) = 0 \quad \text{for } 0 \in M_c, \text{ and so } \Psi(0) = 0 \\ \text{necessarily. Thus that ballous}$

Regarding the uniqueness: ib $\beta: W_c \rightarrow W_h$ is continues and bounded, then Say $\|\beta(x_c)\| \leq C$ but some $C \ni 0$ and all $X_c \in W_c$. It in addition $\{X_c + \beta(X_c) \mid X_c \in W_c\}$ is flow unvariant, then necessarily but $X_o = X_c + \beta(y_c)$, we have $Th(f_{\epsilon}(X_o)) = \beta(T_c(f_{\epsilon}(X_o)) - S_{\epsilon}(T_c(f_{\epsilon}(X_o))) + S_{\epsilon}(T_c(f$

and thus $X_o = X_c + \beta(X_c) \in \{X_c + \Psi(X_c) | X_c \in W_c\}$ But then $\pi_h(X_o) = \Psi(\pi_c(X_o))$ for all X_c , $X_o \notin = \Psi$.

Then we have : ?

Lem 4. Given G: IR " -> IR" ab class C, the map Gp: IR" -> IR", Gp(x)= X(p'x)G(x) agrees with

6 on the open set Bp(0) (where p & IR>0)

Suppose G(0)=0 & DG(0)=0, then given E>0, there is a $\widetilde{\mathcal{F}}_{E}>0$ such that $\widetilde{\mathcal{G}}_{P}$ satisfies the two conditions 1) and 2) in $\overline{\mathcal{F}}_{E}>0$.

- 1) sup 110, 6, (x) 11 < 00 bos 0 = j = le
- Sup $||D\widetilde{G}_{p}(x)|| < \varepsilon$ $x \in \mathbb{R}^{n}$ The $p < \widetilde{P}\varepsilon$.

the system X= AX+ Gp(X), which agrees with X= AX+G(X) locally wround O.

(28) Proof of Lemma 4: it is clear that X(p'x)G(x)=G(x) when $\chi(p'x)=1$, which is (at least) when ||p'x||<1, so when IIXII < p. sobr x & Bp(0). also, as Gp(x)=0 when × \$ Bzp(0), we immediately see that 1) sup 11) Gp(x) 11 = 00 by 0 = j = k, by all p>0. Now note that DGp(x)= X(p'x)DG(x)+p' (DX(p'x)G(x) US G(0)=0 and by the Mean value therein 11 G(x) 11 = 11 G(x) - G(0) 11 = sup 11 DE(5x) x |1 = 11 x |1 sup 11 DE(5x) 11 Se [0.1] S_{p} $||D\widetilde{G}_{p}(x)|| \leq \sup_{\|x\| \leq 2p} ||D\widetilde{G}_{p}(x)||$ Eup X+12m = sup (C, 11DG(x) 11 + p'(z 11G(x)11) where = C, sup 11 DG(x)11+(2) sup 11x11sup 11 DG(5x)11 Ci= sup X(x) ILXILET P SE COIL (2= sup ||) X(x) || = C, sup 110G(x)11 + (2 p⁻¹, 2p. sup 110G(x)11 = (C, +2Cz) sup 11DG(x)11 as DG(0)=0 and Gis C'(so DGis continues), we bind lim || DGp(x)|| = lim (C,+2(1) sup ||)G(x)|| = C. So ginon E, bor & small enough, IDEP(X)11 < E This completes the proof. Before we show how to use Thr 3 in an example, we Now look at the coefficients ab 4 in more delail. Note, by the way, that the Construction surrounding Lemm of depends on all kinds at chorice, and that 29 Now Suppose we have a Ck map 4: We -> Wh, with We & Wh determined by A & Mat(IR. 11). Suppose Y(0)=0 and that {xc+Y(xc) xce Wc} is invariant under the Clow of X= f(x)= Ax +g(x), (g(01=0, Dg(0)=0) on IR"-WCOWh Let's see what this means but the Tuylor - coefficients of Y. as usual, denote by Tick The projections onto We & Wh, respectively, along R = WcOWN. We may write $\dot{x} = f(x)$ as Xc= AcXc + Tc g(Xc, Xh) where Xc/h= Tc/h(X) and Xh= AhXh+ Th g(Xc, Xh) A=(Aco w.r.t. What does a vector tangent to Mc= {xc+Y(xc) |xc+Wc} look like? well, we may devide them by detec (Xc+tVc) + Y(Xc+tVc) = Vc + DY(Xc)Vc , Vc + Wc Thus be Mcto be flow-invariant, we need Thf(xc+4(xc)) = DY(xc) Tef (xc+4(xc) So Ahxh+ Thg(x+4(xc)) = D4(xc)(Acxc+xcg(xc+4(xc)) => Ah W(xc) + Thy(xc+4(xc)) = D4(xc) (Acxc + Tcg(xc+4(xc)) Write Y(Xc)= BXc + O(1Xc12). with B linem, then comparing linear terms alone: AhBxc = BAcxc + Olxc13) => AhB=BxeAc on Wc. We Ac We as digrans. B Wedain that wh Ah Wh necessarily R=0 Suppose A: 12 -> 12, Az: 12 -> 12, B: 12 -> 12 wre linear such that A, & Az have no eigenvalues in Common and Suppose AzB=BA, then B=0. Expand A., Az, Bto C-linear maps on C", C" Denute by L(n, nz) the space of C-linen maps from C" to C", (So B & Lo(n, nz))

```
Consider the C-linear map L: Lo(n,112) 9 given
    by LX = AzX-XAI, So B & ker(L)
    Claim 1 It VI... Vn, is a basis by P" (over C), and wi-wnz is 4 basis by O" (over C) then
                                      a basis bu Lo(n, nz) is given by
                                                                        Cus C*N'
                                                                                                                             { Wiv; | o < i = ne }
                      where Vi. Vn, is the dual basis to Vi. Vn,
                     V; (V3)= { 14 i= 3 = Sis
    Proof. Note that dim La(n, nz) = n, nz. it
                       I I ais wiv; = o bu some ais EC, then given ock = N,
         0 = \( \sum_{\infty} \sum_{\infty} \ais \wiv_{\infty} \left( v_{\beta} \right) = \sum_{\infty} \infty \ais \wis \infty \infty \ais \wis \infty \ais \wis \infty \ais \wis \ais \ais \wis \ais \ais \wis \ais \win \ais \wis \ais \wis \ais \wis \ais \wis \ais \wis \ais \win \ais \
                    So (as the wine a busis) a, h= ark= ... and = 0.
                    This holds bur all k, so the w; V; was liverly independent
                    counting dimensions, we see that we are good
Now Exprose VI. Va, is " laws in which Air appear-trumgular,
                 and Wi. was is a basis -- Azis topped - triugulon, i.e.
                          A. Vi= divi+" terms in Vieleviez. Voi
                          Azws= diwit" teme in With war"
                  Note that the di we the eigensture wh A, and that; the eigenstees who Az.
                                                                        (So di 7 dis brallis, by assumption)
              Order the basis wiv; Each that wiv; < wev if
                e-g- wivi < wivz < wzvi < wivz < wivz < wivz < wivz < wivz = ...
       Claim L'is spess triangular w.v.t this orderded buris,
                                                 the diagonal entres are Jj-d; $0.
```

```
BIProof: Recall A, Vi = di Vi + "terms lower ini"
            So v; (A, Vi)= v; (divi+" terms lone in i") = di=(v; oA,)(vi)
            and v; (A, vk): v; (duve + terms lower ") = 0 = (v;-A1) (vk)
                                             y k<i.
        So vio A = divi + terms in Viti... Vn.
   Thus Lw; v; = Azw; v; - w; (v; · A1)
                     = ( d; w; +" terus in w;+1... wn;") V;
                    - Wo (divit tems in Viti ... Vni)
               = (J; -d;) W; V; + "higher order terms"
       Since d's-di $0 borall 15 i = N, 15 = Nz. and since (
        is lower-triangular, we see that L: La(n, nz) is injectue
       thus byeiline. But, L(B)=0. So B=0
     Note that we only used that A, & Az ( so A, & Ah) have no
      eigenvalues in common!
     Busto Y: We-> Wh, apparantly
            4 (Xc) = 4(2) (Xc) + 4(3) (Yc) +
                                                       (No constant or lineasterns around 0; 4(0)=0, D4(0)=0)
   Back to our original equation
      Ah Y(Xc) + Thy (Xc, Y(Xc)) = DY(Xc) (Axc + Te g(Xc + Y(Xc))
       White \pi h g(X_c, X_h) = g^{(2,0)}(X_c) + g^{(1)}(X_c, X_h) + g^{(0,2)}(X_h) + O(|X_c, X_h|^3).

Then \pi h g(X_c, \Psi(X_c)) = g^{(2,0)}(X_c) + O(|X_c|^3)
        and \pi_{\ell} g(X_{\ell}, \Psi(X_{\ell})) = O(|X_{\ell}|^2), \int \Psi(X_{\ell}) \left(\pi_{\ell} g(X_{\ell} + \Psi(X_{\ell}))\right)

D\Psi(X_{\ell}) = O(|X_{\ell}|^2).
       Thus bu 2nd order
                         Ah 4 (2) (Xc) + g (2.0) (Xc) = D4 (2) (Xc) AcXc + O(1Xcl)
```

32) So to salve: Ah 4 (2)(xc) - D 4 (2)(xc) Acxc = - g (2.0) (xc) It turns out this has a unique solution 4(2)(Xc) More generally: If $\Psi^{(2)}(x_c)$... $\Psi^{(1)}(x_c)$ are known, (as are Trying (Xc, Xh)) then the order (shi) terms wh Total g(Xc, 4(Xc)) are known, as are those at D4(Xc) (Tcg(Xc, 4(Xc))) So me get the equation Ah 4 (lt) (xc) - DY (lt) (xc) AcXc = " Something bound" again, this has a unique Salution 4 (141) (Xc). Thus . The Taylor - expansion of 4 at 0 can be salved ber (and is therebore unique!) up to any order that the regularity of 4 permits! (i.e. if it is Che but not Chel then the kell order term makes little sense) · En the uniqueness claim on eq. At, see e. y [H.K. Wimmer, The equation (g(x))x 9x - b g(x)= h(x), J. Math. Anal. Appl. 62 (1979), 198-204] Note that we only assumed a map 4: W. -> Wh exists (muybe only locally defined around 0) such that 4(0) = 0 and the graph M:={Xc+4(xc) | Xc+ (i) } is imvariant under the blow ab $\dot{x} = f(x) = A \times + g(x)$. We (We concluded that DY(0) = 0 and that all higher - order - Taylor coefficients at o if they exist, are fixed by g) we call a graph M. ab such a 4 a Center - Munibold ab the system x = f(x). as the Taylor- coefficients wound I are tixed, it is tempting to think center-manifolds themselves are (locally) unique. However, this is balse, as the ballowing example shows: Here the center manibalds will even be

globily defined and co

Consider the ODE on IR , given by

$$\dot{x} = -x^{3}$$

$$\dot{y} = -y$$
(tround (0,0), $Wc = \{(x,y) \mid y=0\} = \{(x,0)\}$

$$Wh = \{(x,y) \mid x=0\} = \{(0,y)\}$$
Fix any σ , $\beta \in \mathbb{R}$, and define
$$V_{\sigma,\beta}(x) = \begin{cases}
\alpha e^{-\frac{1}{2}x^{2}} & \text{for } x < 0 \\
0 & \text{for } x=0
\end{cases}$$
We claim that $a_{\sigma,\beta}(x) = \begin{cases}
(x, \psi_{\sigma,\beta}(x)) \mid x \in \mathbb{R}^{2} \\
0 & \text{for } x > 0
\end{cases}$
We claim that $a_{\sigma,\beta}(x) = \begin{cases}
(x, \psi_{\sigma,\beta}(x)) \mid x \in \mathbb{R}^{2} \\
0 & \text{this is clear for the given of the flow is temperated to \mathfrak{D} . This is clear for (0,0).

That the flow is temperated to \mathfrak{D} . This is clear for (0,0).

For $(x, \psi_{\sigma,\beta}(x))$ with $x > 0$:
$$V_{\sigma,\beta}(x) = \begin{cases}
(v, \frac{1}{2}x^{2} e^{-\frac{1}{2}x^{2}}) \mid v \in \mathbb{R}
\end{cases}$$
For every choice of α , $\beta \in \mathbb{R}$ defines $\alpha \in (-x^{2}, -\beta)e^{-\frac{1}{2}x^{2}} \cdot (-x^{3})$

$$= -\beta e^{-\frac{1}{2}x^{2}}$$
For every choice of α , $\beta \in \mathbb{R}$ defines $\alpha \in (-x^{2}, -\beta)e^{-\frac{1}{2}x^{2}} \cdot (-x^{3})$

$$= -\beta e^{-\frac{1}{2}x^{2}}$$
For every choice of α , $\beta \in \mathbb{R}$ defines $\alpha \in (-x^{2}, -\beta)e^{-\frac{1}{2}x^{2}} \cdot (-x^{3})$

$$= -\beta e^{-\frac{1}{2}x^{2}}$$
For every choice of α , $\beta \in \mathbb{R}$ defines $\alpha \in (-x^{2}, -\beta)e^{-\frac{1}{2}x^{2}} \cdot (-x^{3})$

$$= -\beta e^{-\frac{1}{2}x^{2}}$$
For every choice of α , $\beta \in \mathbb{R}$ defines $\alpha \in (-x^{2}, -\beta)e^{-\frac{1}{2}x^{2}} \cdot (-x^{3})$

$$= -\beta e^{-\frac{1}{2}x^{2}}$$
For every choice of α , $\beta \in \mathbb{R}$ defines $\alpha \in (-x^{2}, -\beta)e^{-\frac{1}{2}x^{2}} \cdot (-x^{3})$

$$= -\beta e^{-\frac{1}{2}x^{2}}$$
For every choice of α , $\beta \in \mathbb{R}$ defines $\alpha \in (-x^{2}, -\beta)e^{-\frac{1}{2}x^{2}} \cdot (-x^{3})$

$$= -\beta e^{-\frac{1}{2}x^{2}}$$
For every choice of α , $\beta \in \mathbb{R}$ defines $\alpha \in (-x^{2}, -\beta)e^{-\frac{1}{2}x^{2}} \cdot (-x^{3})$

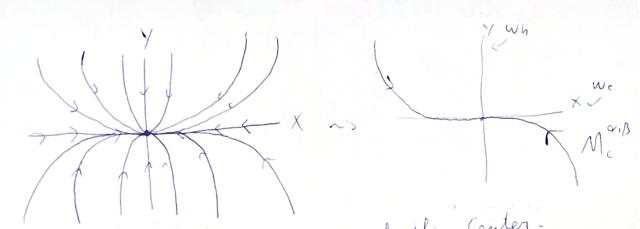
$$= -\beta e^{-\frac{1}{2}x^{2}}$$
For every choice of α , $\beta \in \mathbb{R}$ defines $\alpha \in (-x^{2}, -\beta)e^{-\frac{1}{2}x^{2}} \cdot (-x^{3})$

$$= -\beta e^{-\frac{1}{2}x^{2}}$$
For every choice of α , $\beta \in \mathbb{R}$ defines $\alpha \in (-x^{2}, -\beta)e^{-\frac{1}{2}x^{2}} \cdot (-x^{3})$

$$= -\beta e^{-\frac{1}{2}x^{2}}$$
For every choice of α , $\beta \in \mathbb{R}$ defines $\alpha \in (-x^{2}, -\beta)e^{-\frac{1}{2}x^{2}}$

$$= -\beta e^{-\frac{1}{2}x^{2}}$$
For $\alpha \in (-x^{2}, -\beta)e^{-\frac{1}{2}x^{2}}$

$$= -\beta e^{-\frac{1}{2}x^{2}}$$
For $\alpha \in (-x^{2}, -\beta$$

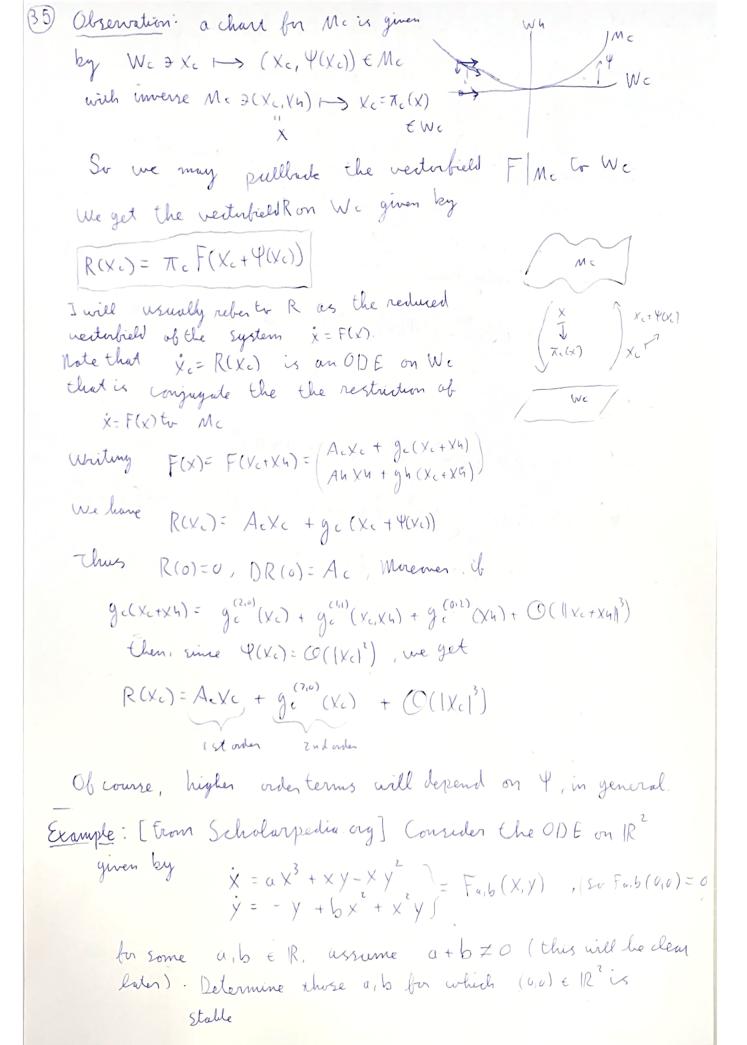


So we are just bully tree to make the Centermanifold out at any orlit by positive X, any orlit by negative X, and the orlit (0,0). Which one would we have bound locally, using our techniques? Well, if X: 12->12 is a broup bundon then we would consider the rystern

 $\dot{x} = - \dot{x}(x)x^{3}$ $\dot{y} = - \dot{y}$ $\dot{x} = - \dot{x}(x)x^{3}$ $\dot{y} = - \dot{y}$ $\dot{x}(x,y) = 0$

Note that for lig enough 11(X, V)11, the ODE becomes x=0 y=-y So to have unbounded Wh-lehavin (y-behavin) (as well as an invariant graph over x) we need $\Psi(x)=0$ at least eventually, But ab course $\Psi(x)=0$ energwhere works, so that is the (necesserally unique!) option we'd bud: $M_c = W_c$

Albright, so we can put our binger on a (locally defined) invariant manifold containing all bounded solutions (locally) How does this help us, say in a liberration analysis? Well, working on a manifold is best done using a chart, lacking we have a global one.



```
Mate that DFa,6 (0,0) = (06) So the linearity gives as no
  information. So we will use Center Manibald Reduction
   Note that We= {(X,0) | X & IR} & IR?
    We first need to calculate some Taylor expourion terms of 4
               wh= {(0,4) | y & 112} = 112
    Let us write \Psi(x) = lx + cx^2 + dx^3 + O(|x|^4). as before, we
    want The Fails (Xc+ 4(yc)) = D4(Xc) Tcfails (Xc+4(xc))
    (note that we already know l=0; whis is just a samity-check.)
        S_{r} = -4(x) + 6x^{2} + x^{2} + 4(x) = 04(x) (ax^{3} + x^{4}(x) - x^{4}(x)^{2})
       (where X:Xc)
      Thus
        - lx - cx^{2} - dx^{3} + bx^{2} + x^{2}(lx) + O(|x|^{4})
    = ( x + 3 dx^{2} ) ( ax^{3} + 1x^{2} + cx^{3} - x ( l^{2}x^{2} ) ) + O(1x^{1})
     1, todes: - 1x = 0 => l=0 (as expected!)
     2 md order (b-c) x2 =0 => b=c
      3. d order - d X3 = 0 => d=0.
        Sr 4(x) = 6x2 + O((x)4).
       Now recall that
       R(x)= To Faib (X+4(x))
           = \alpha \times^{3} + \times \Psi(x) - \times \Psi(x) \left( + \mathcal{O}(|x|^{4}) \right)
            = a x^3 + b x^3 + O((x)^4)
            = (a+b) \times^3 + O(1 \times 1^4)
         (This is why we assumed a + b $ 20)
```

39) We conclude that the origin is unstable it a+6>0, as on the center manifold, the origin is not stable:
rue center surgence, rue octopier
→ → ← ← ← a+b<0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 Com
to know muce)
a+6>0
The East was 100 pt and 10 st
In Each, we will later see that we may conclude that the origin is stable for a+b < 0 3 due to the
the origin is stable for a+b < 0 , due to the
hyperbolic eigenvalues (just - l'in
this case) being stable (having negative real parts)
Thuring reguline real parts)
It should become clear that center-manifold reduction is a very useful technique, but so far we haven to done anything with libraritions yet. So now, assume we have a tanity of vectorbelds again: $f_{\lambda}: \mathbb{R}^n \to \mathbb{R}^n$, $\lambda \in \chi \subseteq \mathbb{R}^d$
very useful technique, but so far we haven't done anything
with biburiations yet. So now, assume me have a family of
the continuous again: file -> IR, x & L = IR
we could get centermarilles for all systems in Fice
T 100000 T 1 10000 C 0 = E
1) How so we garantee some kind at regularity at
1) How do we garantee some kind up regularity of the resulting Carrier of center manifolds Marity?
3) Mure importable 1' (11)
2) More importantly, dim (Mc) = dim (Wc(OFx(0)))
may jump (it will, generically, in a bib. prob.)

(39) Usualy, we need an identification

We (D(x)) F(0,0;0) = We (DxFo(0)) x IR

But then we get a family ab reduced verticely:

Rx: We(DxFo(0)) 9

(39) Usualy, we need an identification We (Dexx) F(0,0;0) = We (Dxfo(0)) x R But then we get a family ab reduced vertibelike Rx: We(DxFd(01) 9

Let's explore this a lit more. We write A = DxF(0,0) , A = D(x,x) F(0,0), and b= Dx F(0,0), so that $\widetilde{A} = \left(\begin{array}{cc} A & b \\ O & 0 \end{array}\right) \int_{\mathbb{R}^n}^{\mathbb{R}^n} as \ \mathbb{R}^n \quad \text{sits in } \mathbb{R}^n \times \mathbb{R}^d$ through $\chi \mapsto (\chi, o)$, we may see 112 as a subspace up 12 x 12. Write W. & Wh for the center - & huperbolic subspaces induced by A, IR - We Own and Welwh but those induced by A, Er IR DIR = We OWh by identifying IR" as (IR", 0)" in IR" & IR", we may see

We, wh as salspures at 12 moin de too.

Then we have:

Lem: in the alone setty:

o Wh = Wh

We = We and there is a linen map x: IRd -> Wh s. E. Craph (K) = {(K(X), X) | X & Rd} & Wc and in bast We= We & Graph(K)

Hence We & We, Wh & Wh. Clearly dim (Wh) = dim (Wh)
and dim (We) + d = dim (We)

So Wh = Wh. Now, with A = (Aco) w.v. + IR = We they
then Ah: Wh-> Wh is invertable, given $\lambda \in \mathbb{R}^d$, set $K(\lambda) = -Ah \pi b \lambda \in Wh$, So $\chi = -Ah \circ \pi h \circ b$ (Note: $b: \mathbb{R}^d \to \mathbb{R}^n$), then we have

 $\left(\begin{array}{c|c} A & b \\ \hline o & o \end{array}\right) = \left(\begin{array}{c} A & v \\ \hline o \end{array}\right)$

$$\tilde{A}\begin{pmatrix} k(\lambda) \\ \lambda \end{pmatrix} = \begin{pmatrix} A & b \\ 0 & 0 \end{pmatrix} \begin{pmatrix} k(\lambda) \\ \lambda \end{pmatrix} = \begin{pmatrix} Ak(\lambda) + b\lambda \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} -AAAI' \pi hb \lambda + b\lambda \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} b\lambda - \pi hb\lambda \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \pi c b\lambda \\ 0 & 0 \end{pmatrix} \in We = We$$

Now suppore $X \in \mathbb{R}^{m+d}$ satisfies $\widetilde{A} \times \widetilde{W}_{c}$, then $X \in \widetilde{W}_{c}$ En, wide $X = \widetilde{\pi}h X + \widetilde{\pi}_{c} X$, then $\widetilde{A} \times \widetilde{A} + \widetilde{A} +$

So from before, $\left\{\binom{K(X)}{\lambda}/\lambda \in \mathbb{R}^d\right\} = \operatorname{Graph}(X) \subseteq W_C$

By dimensions, (and transversality, i.e. VEWER Cape(K))
we bind ~

we bind We = We & Craph (K).

Cor: Define Toth w.v.t IR = wc & wh, and Toth w.v.t IR = wc & wh, and then

Tc (Xc+Xh; X) = (Xc+K(X); X) . Xc & e Wc, Xh & wh Xe 12d

 $\sum_{\lambda} \widehat{\pi}_{\lambda}(x;\lambda) = (\pi_{\lambda}(x) + K(\lambda);\lambda)$ $\widetilde{\pi}_{\lambda}(x;\lambda) = (\pi_{\lambda}(x) - K(\lambda);0)$